Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/15224
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas-
dc.creatorRosillo Guerrero, Nuria-
dc.creatorValera, Ángel-
dc.creatorBenimeli, Francesc-
dc.creatorMata, Vicente-
dc.creatorValero, Francisco-
dc.date.accessioned2024-01-30T08:33:26Z-
dc.date.available2024-01-30T08:33:26Z-
dc.date.issued2011-03-08-
dc.identifier.citationRosillo, N., Valera, A., Benimeli, F., Mata, V. & Valero, F. (2011). Real‐time solving of dynamic problem in industrial robots. Industrial Robot, vol. 38, i. 2 (mar.), pp. 119-129. DOI: https://doi.org/10.1108/01439911111106336es_ES
dc.identifier.issn0143-991X-
dc.identifier.urihttp://hdl.handle.net/10637/15224-
dc.descriptionEste recurso no está disponible en acceso abierto por política de la editorial.-
dc.description.abstractPurpose: The purpose of this paper is to present the development and validation of a methodology which allows modeling and solving the inverse and direct dynamic problem in real time in robot manipulators. Design/methodology/approach: The robot dynamic equation is based on the Gibbs‐Appell equation of motion, yielding a well‐structured set of equations that can be computed in real time. This paper deals with the implementation and calculation of the inverse and direct dynamic problem in robots, with an application to the real‐time control of a PUMA 560 industrial robot provided with an open control architecture based on an industrial personal computer. Findings: The experimental results show the validity of the dynamic model and that the proposed resolution method for the dynamic problem in real time is suitable for control purposes. Research limitations/implications: The accuracy of the applied friction model determines the accuracy of the identified overall model and consequently of the control. This is especially obvious in the case of the PUMA 560 robot, in which the presence of friction is remarkable in some of their joints. Hence, future work should focus on identifying a more precise friction model. The robot model could also be extended by incorporating rotor dynamics and could be applied for different robot configurations as parallel robots. Originality/value: Gibbs‐Appell equations are used in order to develop the robotic manipulator dynamic model, instead of more usual dynamics formulations, due to several advantages that these exhibit. The obtained non‐physical identified parameters are adapted in order to enable their use in a control algorithm.es_ES
dc.language.isoenes_ES
dc.publisherEmeraldes_ES
dc.relation.ispartofIndustrial Robot, vol. 38, i. 2 (mar.)-
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es-
dc.subjectRobóticaes_ES
dc.subjectRoboticses_ES
dc.subjectTeoría de controles_ES
dc.subjectControl theoryes_ES
dc.subjectTeoría de autómatas matemáticoses_ES
dc.subjectMachine theoryes_ES
dc.subjectAlgoritmoes_ES
dc.subjectAlgorithmses_ES
dc.subjectRobot industriales_ES
dc.subjectIndustrial robotses_ES
dc.titleReal‐time solving of dynamic problem in industrial robotses_ES
dc.typeArtículoes_ES
dc.identifier.doihttps://doi.org/10.1108/01439911111106336-
dc.centroUniversidad Cardenal Herrera-CEU-
Aparece en las colecciones: Dpto. Matemáticas, Física y Ciencias Tecnológicas




Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.