Please use this identifier to cite or link to this item: http://hdl.handle.net/10637/15194
Full metadata record
DC FieldValueLanguage
dc.contributor.otherUCH. Departamento de Ciencias Biomédicas-
dc.creatorTaylor, Allen-
dc.creatorGu, Yumei-
dc.creatorChang, Min-Lee-
dc.creatorYang, Wenxin-
dc.creatorFrancisco, Sarah G.-
dc.creatorRowan, Sheldon-
dc.creatorBejarano Fernández, Eloy-
dc.creatorPruitt, Steven-
dc.creatorZhu, Liang-
dc.creatorWeiss, Grant-
dc.creatorBrennan, Lisa-
dc.creatorKantorow, Marc-
dc.creatorWhitcomb, Elizabeth A.-
dc.date.accessioned2024-01-28T17:16:54Z-
dc.date.available2024-01-28T17:16:54Z-
dc.date.issued2023-02-
dc.identifier.citationTaylor, A., Gu, Y., Chang, M.L., Yang, W., Francisco, S., Rowan, S., Bejarano, E., Pruitt, S., Zhu, L., Weiss, G., Brennan, L., Kantorow, M. & Whitcomb, E.A. (2023). Repurposing a cyclin-dependent Kinase 1 (CDK1) mitotic regulatory network to complete terminal differentiation in lens fiber cells. Investigative Ophthalmology & Visual Science, vol. 64, i. 2 (feb.), art. 6. DOI: https://doi.org/10.1167/iovs.64.2.6es_ES
dc.identifier.issn0146-0404-
dc.identifier.issn1552-5783 (Electrónico)-
dc.identifier.urihttp://hdl.handle.net/10637/15194-
dc.description.abstractPurpose: During lens fiber cell differentiation, organelles are removed in an ordered manner to ensure lens clarity. A critical step in this process is removal of the cell nucleus, but the mechanisms by which this occurs are unclear. In this study, we investigate the role of a cyclin-dependent kinase 1 (CDK1) regulatory loop in controlling lens fiber cell denucleation (LFCD). Methods: We examined lens differentiation histologically in two different vertebrate models. An embryonic chick lens culture system was used to test the role of CDK1, cell division cycle 25 (CDC25), WEE1, and PP2A in LFCD. Additionally, we used three mouse models that express high levels of the CDK inhibitor p27 to test whether increased p27 levels affect LFCD. Results: Using chick lens organ cultures, small-molecule inhibitors of CDK1 and CDC25 inhibit LFCD, while inhibiting the CDK1 inhibitory kinase WEE1 potentiates LFCD. Additionally, treatment with an inhibitor of PP2A, which indirectly inhibits CDK1 activity, also increased LFCD. Three different mouse models that express increased levels of p27 through different mechanisms show impaired LFCD. Conclusions: Here we define a conserved nonmitotic role for CDK1 and its upstream regulators in controlling LFCD. We find that CDK1 functionally interacts with WEE1, a nuclear kinase that inhibits CDK1 activity, and CDC25 activating phosphatases in cells where CDK1 activity must be exquisitely regulated to allow for LFCD. We also provide genetic evidence in multiple in vivo models that p27, a CDK1 inhibitor, inhibits lens growth and LFCD.es_ES
dc.language.isoenes_ES
dc.publisherAssociation for Research in Vision and Ophthalmology (ARVO)es_ES
dc.relationEste artículo de investigación ha sido financiado por el NIH (RO1EY028559, RO1EY026979 y USDA 8050-51000-089-01S). También ha sido financiado por el US Department of Agriculture–Agricultural Research Service (58-1950-4-003 y 58-8050-9-004).-
dc.relation.ispartofInvestigative Ophthalmology & Visual Science, vol. 64, i. 2 (feb.)-
dc.rightsOpen Access-
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es-
dc.subjectCellses_ES
dc.subjectCélulaes_ES
dc.subjectEnvejecimientoes_ES
dc.subjectAginges_ES
dc.subjectOftalmologíaes_ES
dc.subjectOphthalmologyes_ES
dc.titleRepurposing a cyclin-dependent Kinase 1 (CDK1) mitotic regulatory network to complete terminal differentiation in lens fiber cellses_ES
dc.typeArtículoes_ES
dc.identifier.doihttps://doi.org/10.1167/iovs.64.2.6-
dc.relation.projectIDRO1EY028559-
dc.relation.projectIDRO1EY026979-
dc.relation.projectIDUSDA 8050-51000-089-01S-
dc.relation.projectID58-1950-4-003-
dc.relation.projectID58-8050-9-004-
dc.centroUniversidad Cardenal Herrera-CEU-
Appears in Collections:Dpto. Ciencias Biomédicas




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.