Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10637/13579
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.other | Producción Científica UCH 2021 | - |
dc.contributor.other | UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas | - |
dc.creator | Billaud Friess, Marie | - |
dc.creator | Falcó Montesinos, Antonio | - |
dc.creator | Nouy, Anthony | - |
dc.date | 2021 | - |
dc.date.accessioned | 2022-03-31T04:00:23Z | - |
dc.date.available | 2022-03-31T04:00:23Z | - |
dc.date.issued | 2021-07-15 | - |
dc.identifier.citation | Billaud-Friess, M., Falcó, A. & Nouy, A. (2021). Principal bundle structure of matrix manifolds. Mathematics, vol. 9, i. 14 (15 jul.), art. 1669. DOI: https://doi.org/10.3390/math9141669 | - |
dc.identifier.issn | 2227-7390 (Electrónico) | - |
dc.identifier.uri | http://hdl.handle.net/10637/13579 | - |
dc.description | Este artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2227-7390/9/14/1669 | - |
dc.description | Este artículo de investigación pertenece al número especial "Differential Geometry: Structures on Manifolds and Their Applications". | - |
dc.description.abstract | In this paper, we introduce a new geometric description of the manifolds of matrices of fixed rank. The starting point is a geometric description of the Grassmann manifold Gr(Rk) of linear subspaces of dimension r < k in Rk, which avoids the use of equivalence classes. The set Gr(Rk) is equipped with an atlas, which provides it with the structure of an analytic manifold modeled on R(kr) r. Then, we define an atlas for the set Mr(Rk r) of full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rk) and typical fibre GLr, the general linear group of invertible matrices in Rk k. Finally, we define an atlas for the setMr(Rn m) of non-full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rn) Gr(Rm) and typical fibre GLr. The atlas ofMr(Rn m) is indexed on the manifold itself, which allows a natural definition of a neighbourhood for a given matrix, this neighbourhood being proved to possess the structure of a Lie group. Moreover, the setMr(Rn m) equipped with the topology induced by the atlas is proven to be an embedded submanifold of the matrix space Rn m equipped with the subspace topology. The proposed geometric description then results in a description of the matrix space Rn m, seen as the union of manifoldsMr(Rn m), as an analytic manifold equipped with a topology for which the matrix rank is a continuous map. | - |
dc.format | application/pdf | - |
dc.language.iso | en | - |
dc.language.iso | es | - |
dc.publisher | MDPI | - |
dc.relation | Este artículo de investigación ha sido financiado por el Ministerio de Ciencia, Innovación y Universidades (MICINN) a través de el proyecto RTI2018-093521-B-C32 y por la Universidad CEU Cardenal Herrera a través de la ayuda INDI20/13. | - |
dc.relation | UCH. Financiación Nacional | - |
dc.relation | UCH. Financiación Universidad | - |
dc.relation.ispartof | Mathematics, vol. 9, n. 14 (15 jul. 2021) | - |
dc.rights | http://creativecommons.org/licenses/by/4.0/deed.es | - |
dc.subject | Topología diferencial. | - |
dc.subject | Differential topology. | - |
dc.subject | Variedades (Matemáticas) | - |
dc.subject | Grassmann, Variedades de. | - |
dc.subject | Grassmann manifolds. | - |
dc.subject | Geometría diferencial. | - |
dc.subject | Geometry, Differential. | - |
dc.subject | Manifolds (Mathematics) | - |
dc.title | Principal bundle structure of matrix manifolds | - |
dc.type | Artículo | - |
dc.identifier.doi | https://doi.org/10.3390/math9141669 | - |
dc.relation.projectID | RTI2018-093521-B-C32 | - |
dc.relation.projectID | INDI20/13 | - |
dc.centro | Universidad Cardenal Herrera-CEU | - |
Aparece en las colecciones: | Dpto. Matemáticas, Física y Ciencias Tecnológicas |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.