Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/13367
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas-
dc.contributor.otherProducción Científica UCH 2017-
dc.creatorMuñoz Almaraz, Francisco Javier-
dc.creatorZamora Martínez, Francisco-
dc.creatorBotella Rocamora, Paloma María-
dc.creatorPardo Albiach, Juan-
dc.date2017-
dc.date.accessioned2022-01-29T05:00:35Z-
dc.date.available2022-01-29T05:00:35Z-
dc.date.issued2017-06-20-
dc.identifier.citationMuñoz-Almaraz, F.J., Zamora-Martínez, F., Botella-Rocamora, P. & Pardo, J. (2017). Supervised filters for EEG signal in naturally occurring epilepsy forecasting. PLoS ONE, vol. 12, i. 6 (20 jun.), art. e0178808. DOI: https://doi.org/10.1371/journal.pone.0178808-
dc.identifier.issn1932-6203 (Electrónico)-
dc.identifier.urihttp://hdl.handle.net/10637/13367-
dc.descriptionEste artículo se encuentra disponible en la siguiente URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178808-
dc.description.abstractNearly 1% of the global population has Epilepsy. Forecasting epileptic seizures with an acceptable confidence level, could improve the disease treatment and thus the lifestyle of the people who suffer it. To do that the electroencephalogram (EEG) signal is usually studied through spectral power band filtering, but this paper proposes an alternative novel method of preprocessing the EEG signal based on supervised filters. Such filters have been employed in a machine learning algorithm, such as the K-Nearest Neighbor (KNN), to improve the prediction of seizures. The proposed solution extends with this novel approach an algorithm that was submitted to win the third prize of an international Data Science challenge promoted by Kaggle contest platform and the American Epilepsy Society, the Epilepsy Foundation, National Institutes of Health (NIH) and Mayo Clinic. A formal description of these preprocessing methods is presented and a detailed analysis in terms of Receiver Operating Characteristics (ROC) curve and Area Under ROC curve is performed. The obtained results show statistical significant improvements when compared with the spectral power band filtering (PBF) typical baseline. A trend between performance and the dataset size is observed, suggesting that the supervised filters bring better information, compared to the conventional PBF filters, as the dataset grows in terms of monitored variables (sensors) and time length. The paper demonstrates a better accuracy in forecasting when new filters are employed and its main contribution is in the field of machine learning algorithms to develop more accurate predictive systems.-
dc.formatapplication/pdf-
dc.language.isoen-
dc.language.isoes-
dc.publisherPLOS-
dc.relationEste trabajo de investigación ha sido financiado por el programa Consolidación de Indicadores CEU-UCH 2015-16 proporcionado por el Vicerrectorado de Investigación de la Universidad CEU Cardenal Herrera.-
dc.relationUCH. Financiación Universidad-
dc.relation.ispartofPLoS ONE, vol. 12, i. 6-
dc.rightshttp://creativecommons.org/licenses/by/4.0/deed.es-
dc.subjectEpilepsy - Prediction (Statistics)-
dc.subjectEpilepsy - Mathematical models.-
dc.subjectEpilepsia - Tratamiento.-
dc.subjectEpilepsia - Modelos matemáticos.-
dc.subjectEpilepsia - Predicción (Estadística)-
dc.subjectElectroencefalografía.-
dc.subjectElectroencephalography.-
dc.subjectEpilepsy - Treatment.-
dc.titleSupervised filters for EEG signal in naturally occurring epilepsy forecasting-
dc.typeArtículo-
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0178808-
dc.relation.projectIDConsolidación de Indicadores CEU-UCH 2015-16-
dc.centroUniversidad Cardenal Herrera-CEU-
Aparece en las colecciones: Dpto. Matemáticas, Física y Ciencias Tecnológicas




Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.