Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/12455
Título : Tape surfaces characterization with persistence images
Autor : Frahi, Tarek.
Argerich Martín, Clara.
Yun, Minyoung.
Falcó Montesinos, Antonio.
Barasinski, Anais.
Chinesta, Francisco.
Materias: Thin films.Películas delgadas.Superficies (Tecnología) - Modelos matemáticos.Composite materials.Surfaces (Technology) - Mathematical models.Materiales compuestos.
Fecha de publicación : 23-jun-2020
Editorial : AIMS.
Citación : Frahi, T., Argerich, C., Yun, M., Falco, A., Barasinski, A. & Chinesta, F. (2020).Tape surfaces characterization with persistence images. AIMS Materials Science, vol. 7, i. 4 (23 jun.), pp. 364-380. DOI: http://dx.doi.org/10.3934/matersci.2020.4.364
Resumen : The aim of this paper is to leverage the main surface topological descriptors to classify tape surface profiles, through the modelling of the evolution of the degree of intimate contact along the consolidation of pre-impregnated preforms associated to a composite forming process. It is well-known at an experimental level that the consolidation degree strongly depends on the surface characteristics (roughness). In particular, same process parameters applied to di erent surfaces produce very di erent degrees of intimate contact. It allows us to think that the surface topology plays an important role along this process. However, solving the physics-based models for simulating the roughness squeezing occurring at the tapes interface represents a computational e ort incompatible with online process control purposes. An alternative approach consists of taking a population of di erent tapes, with di erent surfaces, and simulating the consolidation for evaluating for each one the progression of the degree of intimate contact –DIC– while compressing the heated tapes, until reaching its final value at the end of the compression. The final goal is creating a regression able to assign a final value of the DIC to any surface, enabling online process control. The main issue of such an approach is the rough surface description, that is, the most precise and compact way of describing it from some appropriate parameters easy to extract experimentally, to be included in the just referred regression. In the present paper we consider a novel, powerful and very promising technique based on the topological data analysis –TDA– that considers an adequate metrics to describe, compare and classify rough surfaces.
Descripción : Este artículo se encuentra disponible en la siguiente URL: http://www.aimspress.com/article/10.3934/matersci.2020.4.364
URI : http://hdl.handle.net/10637/12455
Derechos: http://creativecommons.org/licenses/by/4.0/deed.es
ISSN : 2372-0484 (Electrónico)
Aparece en las colecciones: Dpto. Matemáticas, Física y Ciencias Tecnológicas

Ficheros en este ítem:
Fichero Tamaño Formato  
Tape_Frahi_AIMSMS_2020.pdf1,82 MBAdobe PDFVisualizar/Abrir



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.