Tree-based QSAR Model for drug repurposing in the discovery of new antibacterial compounds against "Escherichia coli"

dc.centroUniversidad Cardenal Herrera-CEU
dc.contributor.authorSuay García, Beatriz
dc.contributor.authorBueso Bordils, José Ignacio
dc.contributor.authorAlemán López, Pedro
dc.contributor.authorFalcó Montesinos, Antonio
dc.contributor.authorAntón Fos, Gerardo Manuel
dc.contributor.authorPérez Gracia, María Teresa
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
dc.contributor.otherUCH. Departamento de Farmacia
dc.contributor.otherProducción Científica UCH 2020
dc.date2019
dc.date.accessioned2021-05-08T04:00:11Z
dc.date.available2021-05-08T04:00:11Z
dc.date.issued2021-05-08
dc.descriptionEste artículo se encuentra disponible en la página web de la revista en la siguiente URL: https://www.mdpi.com/1424-8247/13/12/431
dc.descriptionEste artículo pertenece a la colección "Old pharmaceuticals with new applications".
dc.description.abstractDrug repurposing appears as an increasing popular tool in the search of new treatment options against bacteria. In this paper, a tree-based classification method using Linear Discriminant Analysis (LDA) and discrete indexes was used to create a QSAR (Quantitative Structure-Activity Relationship) model to predict antibacterial activity against Escherichia coli. The model consists on a hierarchical decision tree in which a discrete index is used to divide compounds into groups according to their values for said index in order to construct probability spaces. The second step consists in the calculation of a discriminant function which determines the prediction of the model. The model was used to screen the DrugBank database, identifying 134 drugs as possible antibacterial candidates. Out of these 134 drugs, 8 were antibacterial drugs, 67 were drugs approved for di erent pathologies and 55 were drugs in experimental stages. This methodology has proven to be a viable alternative to the traditional methods used to obtain prediction models based on LDA and its application provides interesting new drug candidates to be studied as repurposed antibacterial treatments. Furthermore, the topological indexes Nclass and Numhba have proven to have the ability to group active compounds e ectively, which suggests a close relationship between them and the antibacterial activity of compounds against E. coli.
dc.formatapplication/pdf
dc.identifier.citationSuay-Garcia, B., Falcó, A., Bueso-Bordils, J.I., Anton-Fos, G.M., Pérez-Gracia, M.T. & Alemán-López, P.A. (2020). Tree-based QSAR model for drug repurposing in the discovery of new antibacterial compounds against "Escherichia coli". Pharmaceuticals, vol. 13, i. 12 (28 nov.), art. 431. DOI: https://doi.org/10.3390/ph13120431
dc.identifier.doihttps://doi.org/10.3390/ph13120431
dc.identifier.issn1424-8247 (Electrónico).
dc.identifier.urihttp://hdl.handle.net/10637/12573
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofPharmaceuticals, vol. 13, n. 12.
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectAntibiotics - Mathematical models.
dc.subjectDrug resistance in microorganisms - Mathematical models.
dc.subjectPharmaceutical microbiology - Mathematical models.
dc.subjectFarmacología molecular - Modelos matemáticos.
dc.subjectBiología molecular - Modelos matemáticos.
dc.subjectAntibióticos - Modelos matemáticos.
dc.subjectEscherichia coli - Resistencia a los medicamentos - Modelos matemáticos.
dc.subjectEscherichia coli - Drug resistance - Mathematical models.
dc.subjectBacterias - Resistencia a los medicamentos - Modelos matemáticos.
dc.subjectMolecular pharmacology - Mathematical models.
dc.subjectMolecular biology - Mathematical models.
dc.subjectMicrobiología farmacéutica - Modelos matemáticos.
dc.titleTree-based QSAR Model for drug repurposing in the discovery of new antibacterial compounds against "Escherichia coli"
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublication809b61ac-ad5a-4bd9-b37d-e6d407e5112f
relation.isAuthorOfPublicationf1d85750-f86d-4093-bedc-6988be74f4be
relation.isAuthorOfPublication78e695f2-70f5-43d3-a880-a61400967cc6
relation.isAuthorOfPublication9596df8c-5f91-4c71-9587-f431b684e53d
relation.isAuthorOfPublicationa8adcd29-2ec2-4832-adc2-89d7d9c011dd
relation.isAuthorOfPublicationc5ba1a0b-071c-432a-9cfd-ffddb88d96a0
relation.isAuthorOfPublication.latestForDiscovery809b61ac-ad5a-4bd9-b37d-e6d407e5112f

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Tree_Suay_PHARMACEUTICALS_2020.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format

Collections