Molecular topology for the search of new anti-MRSA compounds

dc.centroUniversidad Cardenal Herrera-CEU
dc.contributor.authorBueso Bordils, José Ignacio
dc.contributor.authorAlemán López, Pedro
dc.contributor.authorFalcó Montesinos, Antonio
dc.contributor.authorDuart Duart, María José
dc.contributor.authorAntón Fos, Gerardo Manuel
dc.contributor.authorMartín Algarra, Rafael Vicente
dc.contributor.otherProducción Científica UCH 2021
dc.contributor.otherUCH. Departamento de Farmacia
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
dc.contributor.otherUCH. ESI International Chair@CEU-UCH
dc.date2021
dc.date.accessioned2022-03-31T04:00:14Z
dc.date.available2022-03-31T04:00:14Z
dc.date.issued2021-05-29
dc.descriptionEste artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/1422-0067/22/11/5823
dc.descriptionEste artículo de investigación pertenece al número especial "Complex Networks, Bio-Molecular Systems, and Machine Learning".
dc.description.abstractThe variability of methicillin-resistant Staphylococcus aureus (MRSA), its rapid adaptive response against environmental changes, and its continued acquisition of antibiotic resistance determinants have made it commonplace in hospitals, where it causes the problem of multidrug resistance. In this study, we used molecular topology to develop several discriminant equations capable of classifying compounds according to their anti-MRSA activity. Topological indices were used as structural descriptors and their relationship with anti-MRSA activity was determined by applying linear discriminant analysis (LDA) on a group of quinolones and quinolone-like compounds. Four extra equations were constructed, named DFMRSA1, DFMRSA2, DFMRSA3 and DFMRSA4 (DFMRSA was built in a previous study), all with good statistical parameters, such as Fisher–Snedecor F (>68 in all cases), Wilk’s lambda (<0.13 in all cases), and percentage of correct classification (>94% in all cases), which allows a reliable extrapolation prediction of antibacterial activity in any organic compound. The results obtained clearly reveal the high efficiency of combining molecular topology with LDA for the prediction of anti-MRSA activity.
dc.formatapplication/pdf
dc.identifier.citationBueso-Bordils, J. I., Alemán-López, P. A., Martín-Algarra, R., Duart, M. J., Falcó, A. & Antón-Fos, G. M. (2021). Molecular topology for the search of new anti-MRSA compounds. International Journal of Molecular Sciences, vol. 22, i. 11 (29 may.), art. 5823. DOI: https://doi.org/10.3390/ijms22115823
dc.identifier.doihttps://doi.org/10.3390/ijms22115823
dc.identifier.issn1422-0067 (Electrónico)
dc.identifier.urihttp://hdl.handle.net/10637/13577
dc.language.isoen
dc.language.isoes
dc.publisherMDPI
dc.relationEste artículo de investigación ha sido financiado por la Cátedra ESI International Chair@CEU UCH. Así como, a través de las becas BC/ICB-Santander 05/12 y BC/ICB-Santander 06/12 del Instituto de Ciencias Biomédicas (ICB) de la Universidad CEU Cardenal Herrera.
dc.relationUCH. Financiación Universidad
dc.relation.ispartofInternational Journal of Molecular Sciences, vol. 22, n. 11 (29 may. 2021)
dc.relation.projectIDBC/ICB-Santander 05/12
dc.relation.projectIDBC/ICB-Santander 06/12
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectEstafilococos - Resistencia a los medicamentos - Modelos matemáticos.
dc.subjectTopología - Aplicaciones en moléculas.
dc.subjectQuinolone antibacterial agents - Mathematical models.
dc.subjectQuinolonas - Modelos matemáticos.
dc.subjectTopology in molecules.
dc.subjectStaphylococcus - Drug resistance - Mathematical models.
dc.titleMolecular topology for the search of new anti-MRSA compounds
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublicationf1d85750-f86d-4093-bedc-6988be74f4be
relation.isAuthorOfPublication78e695f2-70f5-43d3-a880-a61400967cc6
relation.isAuthorOfPublication9596df8c-5f91-4c71-9587-f431b684e53d
relation.isAuthorOfPublicationa8adcd29-2ec2-4832-adc2-89d7d9c011dd
relation.isAuthorOfPublication949fd8cf-8531-4c9e-9abb-804d4350d5d4
relation.isAuthorOfPublication.latestForDiscoveryf1d85750-f86d-4093-bedc-6988be74f4be

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Molecular_Bueso_IJOMS_2021.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format

Collections