Facultad de Ciencias de la Salud

Permanent URI for this communityhttps://hdl.handle.net/10637/2790

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    UCH
    High myopia and the complement system : factor H in myopic maculopathy2021-06-12

    High myopia (HM) is both a medical problem and refractive error of the eye owing to excessive eyeball length, which progressively makes eye tissue atrophic, and is one of the main causes for diminishing visual acuity in developed countries. Despite its high prevalence and many genetic and proteomic studies, no molecular pattern exists that explain the degenerative process underlying HM, which predisposes patients to other diseases like glaucoma, cataracts, retinal detachment and chorioretinal atrophy that affect the macular area. To determine the relation between complement Factors H (CFH) and D (CFD) and the maculopathy of patients with degenerative myopia, we studied aqueous humor samples that were collected by aspiration from 122 patients during cataract surgery. Eyes were classified according to eyeball axial length as high myopia (axial length > 26 mm), low myopia (axial length 23.5–25.9 mm) and control (axial length < 23.4 mm). The degree of maculopathy was classified according to fundus oculi findings following IMI’s classification. Subfoveal choroid thickness was measured by optical coherence tomography. CFH and CFD measurements were taken by ELISA. CFH levels were significantly high in the high myopia group vs. the low myopia and control groups (p < 0.05). Significantly high CFH values were found in those eyes with choroid atrophy and neovascularization (p < 0.05). In parallel, the CFH concentration correlated inversely with choroid thickness (R = 􀀀0.624). CFD levels did not correlate with maculopathy. All the obtained data seem to suggest that CFH plays a key role in myopic pathology.

  • Thumbnail Image
    Publication
    UCH
    Oxidative stress and autophagy-related changes during retinal degeneration and development2018-04-10

    Retinitis pigmentosa (RP) is an inherited retinopathy that leads to photoreceptor loss. RP has been related to oxidative stress, autophagy, and inflammation. This study aimed to identify changes in the levels of oxidative stress and autophagy markers in the retina of control and rd10 mice during different phases of retinal development. Changes in the retinal oxidation system were investigated by measuring the levels of oxidized and reduced glutathione (GSH/GSSG), retinal avidin-positive cells, and 4-hydroxynonenal (4-HNE) staining intensity. Autophagy characterization was explored by measuring the levels of microtubule-associated protein 1 light chain 3 (LC3), beclin, autophagy-related proteins 5 and 7 (Atg5 and Atg7), and lysosomal associated membrane protein-2A (LAMP-2A). At P28 retinal GSH concentrations decreased in rd10 mice compared to the controls. No differences were found in retinal GSSG concentrations between the control and rd10 mice. There was an increase in retinal GSSG concentrations and a decrease in the GSH/GSSG ratio in the control and rd10 mice at P21 and P28 compared to P13. We observed an increase in avidin-positive cells in rd10 retinas. 4-HNE was increased in rd10 retinas at P13, and it also increased in control mice with age. We did not observe any differences in the retinal levels of LC3II/I ratio, Beclin, Atg5, or Atg7 in the rd10 mice compared to the controls. There was an increase in the LAMP-2A concentrations in the control and rd10 mice with development age (P28 concentrations vs. P13). Although only slight differences were found in the oxidative stress and autophagy markers between the control and rd10 mice, there were increases in the GSSG, 4-HNE, and LAMP-2A with age. This increase in the oxidative stress and chaperone-mediated autophagy has not been described before and occurred just after the mice opened their eyes, potentially indicating a retinal response to light exposure.