Facultad de Ciencias de la Salud
Permanent URI for this communityhttps://hdl.handle.net/10637/2790
Search Results
- Progesterone, Lipoic Acid, and Sulforaphane as promising antioxidants for retinal diseases : a review
2019-03-02 Oxidative stress has been documented to be a key factor in the cause and progression of different retinal diseases. Oxidative cellular unbalance triggers a sequence of reactions which prompt cell degeneration and retinal dysfunction, both hallmarks of several retinal pathologies. There is no effective treatment, yet, for many retinal diseases. Antioxidant treatment have been pointed out to be an encouraging palliative treatment; the beneficial effects documented involve slowing the progression of the disease, a reduction of cell degeneration, and improvement of retinal functions. There is a vast information corpus on antioxidant candidates. In this review, we expose three of the main antioxidant treatments, selected for their promising results that has been reported to date. Recently, the sulforaphane, an isothiocyanate molecule, has been unveiled as a neuroprotective candidate, by its antioxidant properties. Progesterone, a neurosteroid has been proposed to be a solid and effective neuroprotective agent. Finally, the lipoic acid, an organosulfur compound, is a well-recognized antioxidant. All of them, have been tested and studied on different retinal disease models. In this review, we summarized the published results of these works, to offer a general view of the current antioxidant treatment advances, including the main effects and mechanisms described.
- Lipoic acid and progesterone alone or in combination ameliorate retinal degeneration in an experimental model of hereditary retinal degeneration
2018-05-01 Retinitis pigmentosa (RP) is a group of inherited retinopathies characterized by photoreceptors death. Our group has shown the positive progesterone (P4) actions on cell death progression in an experimental model of RP. In an effort to enhance the beneficial effects of P4, the aim of this study was to combine P4 treatment with an antioxidant [lipoic acid (LA)] in the rd1 mice. rd1 and control mice were treated with 100 mg/kg body weight of P4, LA, or a combination of both on postnatal day 7 (PN7), 9, and 11, and were sacrificed at PN11. The administration of LA and/or P4 diminishes cell death in rd1 retinas. The effect obtained after the combined administration of LA and P4 is higher than the one obtained with LA or P4 alone. The three treatments decreased GFAP staining, however, in the far peripheral retina, and the two treatments that offered better results were LA and LA plus P4. LA or LA plus P4 increased retinal glutathione (GSH) concentration in the rd1 mice. Although LA and P4 are able to protect photoreceptors from death in rd1 mice retinas, a better effectiveness is achieved when administering LA and P4 at the same time.