Facultad de Ciencias de la Salud
Permanent URI for this communityhttps://hdl.handle.net/10637/2790
Search Results
- SARS-CoV-2-Spike antibody and T-cell responses elicited by a homologous third mRNA COVID-19 dose in hemodialysis and kidney transplant recipients
2022-11-16 The effect of a third vaccine dose (3D) of homologous mRNA vaccine on blood levels of SARS-CoV-2-receptor binding domain (RBD)-total antibodies was assessed in 40 hemodialysis patients (HD) and 21 kidney transplant recipients (KTR) at a median of 46 days after 3D. Anti-RBD antibodies were detected in 39/40 HD and 19/21 KTR. Overall, 3D boosted anti-RBD antibody levels (median: 58-fold increase). Neutralizing antibodies (NtAb) against the Wuhan-Hu-1, Delta, and Omicron variants were detected in 14, 13, and 11 out of 14 HD patients, and in 5, 5, and 4 out of 8 KTR patients, respectively. The median fold increase in NtAb titers in HD patients was 77, 28, and 5 and 56, 37, and 9 in KTR patients for each respective variant. SARS-CoV-2-S S-IFN- -producing CD8+ and CD4+ T-cell responses were detected in the majority of HD (35 and 36/37, respectively) and all KTR (16/16) patients at 3D. Overall, the administration of 3D boosted T-cell levels in both population groups. In conclusion, a homologous mRNA COVID-19 vaccine 3D exerts a booster effect on anti-RBD antibodies, NtAb binding to Wuhan-Hu-1, Delta, and Omicron variants, and SARS-CoV-2-S-IFN- -producing T cells in both HD and KTR patients. The magnitude of the effect was more marked in HD than KTR patients.
- Dynamics of SARS-CoV-2-spike-reactive antibody and T-cell responses in chronic kidney disease patients within 3 months after COVID-19 full vaccination
2022-08-31 Background. Little is known regarding the dynamics of antibody and T-cell responses in chronic kidney disease (CKD) following coronavirus disease 2019 (COVID-19) vaccination. Methods. Prospective observational cohort study including 144 participants on haemodialysis (HD) (n = 52) or peritoneal dialysis (PD) (n = 14), those undergoing kidney transplantation (KT) (n = 30) or those with advanced CKD (ACKD) not on dialysis and healthy controls (n = 18). Anti-Spike (S) antibody and T-cell responses were assessed at 15 days (15D) and 3 months (3M) after complete vaccination schedule. HD, PD and KT patients received mRNA vaccines (mRNA-123 and BNT162b2). Most ACKD patients received BNT162b2 (n = 23), or Ad26.COV.2.S (4). Most controls received BNT162b2 (n = 12), or Ad26.COV.2.S (n = 5). Results. Anti-S antibodies at 15D and 3M were detectable in 95% (48/50)/98% (49/50) of HD patients, 93% (13/14)/100% of PD patients, 67% (17/26)/75% (21/28) of KT patients and 96% (25/26)/100% (24/24) of ACKD patients. Rates for healthy controls were 81% (13/16)/100% (17/17). Previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-S) infection was documented in four (7.7%) HD patients, two (14.3%) PD patients, two (6.7%) KT patients, one (5.55%) healthy control and in no ACKD patient. Antibody levels decreased at 3M in HD (P = .04), PD (P = .008) and ACKD patients (P = .0009). In KT patients, levels increased (P = .04) between 15D and 3M, although they were low at both time points. T-cell responses were detected in HD patients in 37 (80%) at baseline, 35 (70%) at 15D and 41 (91%) at 3M. In PD patients, T-cell responses appeared in 8 (67%) at baseline, 13 (93%) at 15D and 9 (100%) at 3M. In KT patients, T-cell responses were detected in 12 (41%) at baseline, 22 (84%) at 15D and 25 (96%) at 3M. In ACKD patients, T-cell responses were detected in 13 (46%) at baseline, 20 (80%) at 15D and 17 (89%) at 3M. None of healthy controls showed T-cell response at baseline, 10 (67%) at 15D and 8 (89%) at 3M. Conclusions. Most HD, PD and ACKD patients develop SARS-CoV-2-S antibody responses comparable to that of healthy controls, in contrast to KT recipients. Antibody waning at 3M was faster in HD, PD and ACKD patients. No differences in SARS-CoV-2 T-cell immunity responses were noticed across study groups.
- IFT46 expression in the nasal mucosa of Primary Ciliary Dyskinesia patients : preliminary study
2021-02-11 Background: Primary ciliary dyskinesia (PCD) is characterised by an imbalance in mucociliary clearance leading to chronic respiratory infections. Cilia length is considered to be a contributing factor in cilia movement. Recently, IFT46 protein has been related to cilia length. Therefore, this work aims to study IFT46 expression in a PCD patients cohort and analyse its relationship with cilia length and function, as it was not previously described. Materials and methods: The expression of one intraflagellar transport (IFT46) and two regulating ciliary architecture (FOXJ1 and DNAI2) genes, as well as cilia length of 27 PCD patients, were measured. PCD patients were diagnosed based on clinical data, and cilia function and ultrastructure. Gene expression was estimated by real-time RT-PCR and cilia length by electron microscopy in nasal epithelium biopsies. Results and conclusions: While IFT46 expression was only diminished in patients with short cilia, FOXJ1, and DNAI2 expression were reduced in all PCD patient groups compared to controls levels. Among the PCD patients, cilia were short in 44% (5.9 0.70 mm); nine of these (33% from the total) patients’ cilia also had an abnormal ultrastructure. Cilia length was normal in 33% of patients (6.4 0.39 mm), and only three patients’ biopsies indicated decreased expression of dynein.