Facultad de Ciencias de la Salud
Permanent URI for this communityhttps://hdl.handle.net/10637/2790
Search Results
- Medicinal plants and natural products as neuroprotective agents in age-related macular degeneration
2020-12-01 The retina may suffer neurodegenerative damages, as other tissues of the central nervous system do, and serious eye diseases may develop. One of them is age-related macular degeneration, which causes progressive loss of vision due to retina degeneration. Treatment of age-related macular degeneration focuses on antioxidant agents and anti-vascular endothelial growth factor compounds, among others, that prevent/ diminish oxidative stress and reduce neovascularisation respectively. The phytochemicals, medicinal plants and/or plant-diet supplements might be a useful adjunct in prevention or treatment of age-related macular degeneration owing to their antioxidant and anti-vascular endothelial growth factor properties. This review article presents the most investigated plants and natural products in relation to age-related macular degeneration, such as saffron, ginkgo, bilberry and blueberry, curcuma or turmeric, carotenoids, polyphenols, and vitamins C and E. This study provides up-to-date information on the effects, treatments, safety and efficiency of these phytotherapy products.
- Micelles of progesterone for topical eye administration : interspecies and intertissues differences in ex vivo ocular permeability
2020-07-26 Progesterone (PG) may provide protection to the retina during retinitis pigmentosa, but its topical ocular supply is hampered by PG poor aqueous solubility and low ocular bioavailability. The development of e cient topical ocular forms must face up to two relevant challenges: Protective barriers of the eyes and lack of validated ex vivo tests to predict drug permeability. The aims of this study were: (i) To design micelles using Pluronic F68 and Soluplus copolymers to overcome PG solubility and permeability; and (ii) to compare drug di usion through the cornea and sclera of three animal species (rabbit, porcine, and bovine) to investigate interspecies di erences. Micelles of Pluronic F68 (3–4 nm) and Soluplus (52–59 nm) increased PG solubility by one and two orders of magnitude, respectively and exhibited nearly a 100% encapsulation e ciency. Soluplus systems showed in situ gelling capability in contrast to the low viscosity Pluronic F68 micelles. The formulations successfully passed the hen’s egg-chorioallantoic membrane test (HET-CAM) test. PG penetration through rabbit cornea and sclera was faster than through porcine or bovine cornea, although the di erences were also formulation-dependent. Porcine tissues showed intermediate permeability between rabbit and bovine. Soluplus micelles allowed greater PG accumulation in cornea and sclera whereas Pluronic F68 promoted a faster penetration of lower PG doses.
- Ex-vivo trans-corneal and trans-scleral diffusion studies with ocular formulations of glutathione as an antioxidant treatment for ocular diseases
2020-09-10 Exposure to sunlight and contact with atmospheric oxygen makes the eye particularly susceptible to oxidative stress, which can potentially produce cellular damage. In physiological conditions, there are several antioxidant defense mechanisms within the eye. Glutathione (GSH) is the most important antioxidant in the eye; GSH deficit has been linked to several ocular pathologies. The aim of this study was to explore the potential for newly developed formulations allowing controlled delivery of antioxidants such as GSH and vitamin C (Vit C) directly to the eye. We have investigated the stability of antioxidants in aqueous solution and assessed ex-vivo the di usion of GSH through two ocular membranes, namely cornea and sclera, either in solution or included in a semisolid insert. We have also carried out the hen’s egg-chlorioallantoic membrane test (HET-CAM) to evaluate the ocular irritancy of the di erent antioxidant solutions. Our results showed that GSH is stable for up to 30 days at 4 C in darkness and it is not an irritant to the eye. The di usion studies revealed that the manufactured formulation, a semisolid insert containing GSH, could deliver this tripeptide directly to the eye in a sustained manner.
- Progesterone anti-inflammatory properties in hereditary retinal degeneration
2019-05-12 The interactions between steroid gonadal hormones and the retina (a part of the visual system and the central nervous system (CNS)) have received limited attention and beneficial effects of these hormones in retinal diseases is controversial. Retinitis pigmentosa (RP) is the most common cause of retinal hereditary blindness and to date no treatment is available. However, results regarding the effects of progesterone on the progression of RP are promising. With the idea of demonstrating if the progesterone retinal protection in RP is related to its possible anti-inflammatory properties, we have administered orally progesterone to rd10 mice, an animal model of RP. We observed that progesterone decreased photoreceptors cell death, reactive gliosis and the increase in microglial cells caused by RP. We also examined the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzyme responsible for NO production. The results demonstrated a decrease in nNOS expression only in control mice treated with progesterone. Inflammation has been related with an increase in lipid peroxidation. Noticeably progesterone administration was able to diminish retinal malondialdehyde (MDA, a lipid peroxidation product) concentrations in rd10 mice. Altogether, we can conclude that progesterone could be a good therapeutic option not only in RP but also for other retinal diseases that have been associated with inflammation and lipid peroxidation.
- Bevacizumab diminishes inflammation in an acute endotoxin-induced uveitis model
2018-06-07 Introduction: Uveitis is an eye disease characterized by inflammation of the uvea and an early and exhaustive diagnosis is essential for its treatment. The aim of our study is to assess the potential toxicity and anti-inflammatory efficacy of Bevacizumab in an experimental uveitis model by subcutaneously injecting lipopolysaccharide into Lewis rats and to clarify its mechanism. Material and Methods: Blood–aqueous barrier integrity was assessed 24 h after endotoxin-induced uveitis (EIU) by analyzing two parameters: cell count and protein concentration in aqueous humors. Histopathology of all eye structures was also studied. Enzyme-linked immunosorbent analyses of the aqueous humor samples were performed in order to calculate the diverse chemokine and cytokine protein levels and oxidative stress-related markers were also evaluated. Results: The aqueous humor’s cellular content significantly increased in the group treated with only Bevacizumab, but it had no effect on retina histopathological grading. Nevertheless, the inflammation noted in ocular structures when administering Bevacizumab with endotoxin was mostly prevented since aqueous humor cell content considerably lowered, and concomitantly with a sharp drop in uveal, vitreous, and retina histopathological grading. The values of the multi-faceted cytokine IL-2 also significantly decreased (p < 0.05 vs. endotoxin group), and the protective IL-6 and IL-10 cytokines values rose with related anti-oxidant system recovery (p < 0.05 vs. endotoxin group). Concurrently, some related M1 macrophage chemokines substantially increased, e.g., GRO/KC, a chemokine that also displays any kind of protective role. Conclusion: All these results revealed that 24 h after being administered, Bevacizumab treatment in EIU significantly prevented inflammation in various eye structures and correct results in efficacy vs. toxicity balance were obtained.