Facultad de Ciencias de la Salud

Permanent URI for this communityhttps://hdl.handle.net/10637/2790

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    UCH
    Innovative gamification and outreach tools to raise awareness about antimicrobial resistance2022-09-15

    Since 2017, the SWICEU team has developed various informative actions and innovative gamification supports to educate and raise awareness about antimicrobial resistance (AMR) and the correct use of antibiotics among the general population especially among young people. This case study presents the results obtained in the last 5 years with the strategies carried out by this team, composed of students and professors of Health Sciences, Industrial Design Engineering, and Communication Sciences at CEU Cardenal Herrera University (CEU UCH) in Valencia (Spain). Over the past 5 years, playful educational supports have been developed to make the health problem of bacterial resistance and the action of antibiotics more understandable among young people. The dissemination media used, with the same objective of teaching and raising awareness about AMR in a creative and innovative way, have been selected according to the trends in digital communication and use of scientific and health content provided by the most recent studies carried out among the Spanish population. These strategies have included decalogues or “tips” with useful advice, infographics, YouTube videos, Twitter threads, online challenges on Kahoot, stories on Instagram, use of QR codes, etc. These actions have also obtained diffusion in the media and have been awarded by different national and international entities. The good results obtained in the case under study allow us to establish recommendations for the design of innovative educational gamification and dissemination supports on AMR, especially aimed at younger audiences.

  • Thumbnail Image
    Publication
    UCH
    Evaluation of knowledge about antibiotics and engagement with a research experience on antimicrobial resistance between pre-university and university students for five school years (2017-2021)2022-08-10

    Antimicrobial resistance (AMR) remains a serious global health problem. Spain is the fifth country in Europe with the highest consumption of antibiotics, due in part to ignorance of the good use of these drugs and the problem of AMR. To avoid a post-antibiotic era, adequate training on this problem is key to create social awareness. This study aimed to evaluate the impact that the SWICEU project, an academic program about antibiotic discovery, has had on the knowledge of AMR and rational use of antimicrobials in preuniversity students from seven schools in the province of Valencia during five academic years (2017–2021), as well as to evaluate the level of satisfaction of university and pre-university students who have participated in the project. For this study, a survey was carried out with multiple-choice questions with a single correct answer to evaluate the knowledge acquired by pre-university students before and after the project. A satisfaction survey was also designed with a Likert scale from the lowest to the highest level of satisfaction for the two groups of students after the project. Data on knowledge surveys indicated an increase in the mean number of correct answers after the sessions. In satisfaction surveys, we highlighted the issue that referred to the project’s recommendation. The data obtained confirm this project as a valuable activity, as it allows learning about AMR and the rational use of antibiotics in a pleasing and attractive way for young pre-university and university students.

  • Thumbnail Image
    Publication
    UCH
    Evaluation of the impact of the Tiny Earth Project on the knowledge about antibiotics of pre-university students in the province of Valencia on three different school years (2017-2020)2020-11-19

    According to the World Health Organization (WHO), antibacterial resistance is a serious problem worldwide. In Spain, knowledge about the use of antibiotics is scarce, being the third country with the highest consumption of antibiotics in the world and the first in Europe. This problem is due, partly, to the abusive use of these drugs in human medicine, livestock, and agriculture. The objective of this study was to evaluate the impact that the Tiny Earth project has had on the antibiotic knowledge in pre-university students. To do this, a survey was conducted before and after the Tiny Earth project in three different school years (2017–2020) to 322 pre-university students belonging to seven schools in the province of Valencia. The survey consisted of 12 multiple-choice questions with a single valid answer. We observed 67.6% success at the beginning and 81.2% at the end. These data indicate that they correctly answered an average of 1.64 more questions after completing the project. In view of the results, we can affirm that the Tiny Earth project has contributed to an improvement in scientific knowledge and awareness of the correct use of antibiotics and the emergence of resistances by pre-university students, which could also be transmitted to their social environment, thus improving awareness global on these issues.

  • Thumbnail Image
    Publication
    UCH
    Detection and characterization of extended-spectrum Beta-Lactamases-Producing "Escherichia coli" in animals2019-02-01

    The detection of multi-drug resistant bacteria is a growing problem, however, the role of domesticated animals in the propagation of antimicrobial resistance has barely been studied. The aim of this study was to identify ESBL-producing Escherichia coli strains in domestic animal feces in order to assess their antimicrobial resistance profile and carry out molecular characterization of the ß-lactamases. A total of 325 samples were collected from 8 animal species. Of these, 34 bacterial isolates were identified as E. coli. The antibiotic resistance profile of the E. coli strains was as follows: 100% resistant to amoxicillin, aztreonam, and cephalosporines; 58.8% resistant to nalidixic acid, ciprofloxacin and trimethoprim/sulphamethoxazole; 41.2% resistant to gentamicin and tobramycin; 11.8% resistant and 32.4% intermediate to cefoxitin, 97.1% sensible and 2.9% intermediate to amoxicillin/clavulanate; and 100% sensible to ertapenem, minocycline, imipenem, meropenem, amikacin, nitrofurantoin, phosphomycin and colistin. All 34 E. coli strains met criteria for ESBL production. In total, 46 ß-lactamase genes were detected: 43.5% blaTEM, 30.4% blaCTX-M (23.9% blaCTX-M-1 and 6.5% blaCTX-M-9) and 26.1% blaSHV (17.4% blaSHV-5 and 8.7% blaSHV-12). All the ß-lactamases were found in dogs except for 4 blaSHV found in falcons. No pAmpC genes were found. The high prevalence of ESBL-producing E. coli strains in animals could become a zoonotic transmission vector.

  • Thumbnail Image
    Publication
    UCH
    Future prospects for "Neisseria gonorrhoeae" treatment2018-06-01

    Gonorrhea is a sexually transmitted disease with a high morbidity burden. Incidence of this disease is rising due to the increasing number of antibiotic-resistant strains. Neisseria gonorrhoeae has shown an extraordinary ability to develop resistance to all antimicrobials introduced for its treatment. In fact, it was recently classified as a “Priority 2” microorganism in theWorld Health Organization (WHO) Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery and Development of New Antibiotics. Seeing as there is no gonococcal vaccine, control of the disease relies entirely on prevention, diagnosis, and, especially, antibiotic treatment. Different health organizations worldwide have established treatment guidelines against gonorrhea, mostly consisting of dual therapy with a single oral or intramuscular dose. However, gonococci continue to develop resistances to all antibiotics introduced for treatment. In fact, the first strain of super-resistant N. gonorrhoeae was recently detected in the United Kingdom, which was resistant to ceftriaxone and azithromycin. The increase in the detection of resistant gonococci may lead to a situation where gonorrhea becomes untreatable. Seeing as drug resistance appears to be unstoppable, new treatment options are necessary in order to control the disease. Three approaches are currently being followed for the development of new therapies against drug-resistant gonococci: (1) novel combinations of already existing antibiotics; (2) development of new antibiotics; and (3) development of alternative therapies which might slow down the appearance of resistances. N. gonorrhoeae is a public health threat due to the increasing number of antibiotic-resistant strains. Current treatment guidelines are already being challenged by this superbug. This has led the scientific community to develop new antibiotics and alternative therapies in order to control this disease.