Facultad de Ciencias de la Salud
Permanent URI for this communityhttps://hdl.handle.net/10637/2790
Search Results
- Preventive management of carious lesions: from non-invasive to micro-invasive operative interventions
2024-04 Understanding that dental carious lesions occur as a result of the action of micro-organisms in the dental plaque biofilm, where demineralisation on the tooth surface is the first sign of the disease, such incipient lesions can be treated using preventive, non-operative and minimally invasive operative dentistry. If the caries process is left unmanaged, the lesions progress towards cavitation, leading to more invasive treatments. This article discusses the principles of preventive, non-invasive and micro-invasive treatments of early carious lesions, outlining the clinical situations where these therapies can be applied.
- Chemical, structural and cytotoxicity characterisation of experimental fluoride-doped calcium phosphates as promising remineralising materials for dental applications
2023-04 Objectives: This study aimed at evaluating the cytotoxicity, chemical and structural properties of experimental fluoride-doped calcium-phosphates as potential remineralising materials for dental applications. Methods: Experimental calcium phosphates were formulated using Ī²-tricalcium phosphate, monocalcium phosphate monohydrate, calcium hydroxide, and different concentrations of calcium/sodium fluoride salts [(5 wt%: VSG5F), (10 wt%: VSG10F), (20 wt%: VSG20F)]. A fluoride-free calcium phosphate (VSG) was used as control. Each tested material was immersed in simulated body fluid (SBF), (24 h, 15 and 30 days) to assess their ability to crystallise into apatite-like. Cumulative fluoride release was assayed up to 45 days. Moreover, each powder was placed into a medium containing human dental pulp stem cells (200 mg/mL) and their cytotoxicity was analysed using the 3-(4,5-dimethylthiazol-2-yl)ā 2,5-diphenyltetrazolium bromide (MTT) assay (24 h, 48 h and 72 h incubation). These latter results were statistically analysed by ANOVA and Tukeyās test (Ī± = 0.05). Results: All the experimental VSG-F materials produced fluoride-containing apatite-like crystals after SBF immersion. VSG20F presented prolonged release of fluoride ions into the storage media (45d). VSG, VSG10F and VSG20F showed a significant cytotoxicity at dilution of 1:1, while at 1:5, only VSG and VSG20F demonstrated a reduction in cell viability. At lower dilutions (1:10, 1:50 and 1:100) all specimens showed no significant toxicity to hDPSCs, but an increase in cell proliferation. Significance: The experimental fluoride-doped calcium-phosphates are biocompatible and possess a clear ability to evoke fluoride-containing apatite-like crystallisation. Hence, they may be promising remineralising materials for dental applications.
- Characterisation of experimental flowable composites containing fluoride-doped calcium phosphates as promising remineralising materials
2024-04 Objective: Remineralising composites with antibacterial properties may seal the cavity and prevent secondary caries. This study aimed at developing experimental flowable composites containing different concentrations of fluoride-doped calcium phosphate fillers and evaluating their remineralising and antibacterial properties. Methods: Experimental resin-based composites containing different concentrations (0ā20 %) of fluoride-doped calcium phosphate fillers (VS10/VS20) were formulated. The release of calcium (Ca), phosphate (PO) and fluoride (F) ions was assessed for 30 days. Remineralisation properties were evaluated through ATR-FTIR and SEM/EDX after storage in simulated body fluid (SBF). The metabolic activity and viability of Streptococcus gordonii was also evaluated through ATP, CFU and live/dead confocal microscopy. The evaluation of specific monomer elution from the experimental composites was conducted using high-performance liquid chromatography (HPLC). Results: The composites containing VS10 showed the highest release of Ca, those containing VS20 released more F over time (p < 0.05), while there was no significant difference in terms of PO ions release between the groups (p > 0.05). A quick 7-day mineral precipitation was observed in the tested composites containing VS10 or VS20 at 10 %; these materials also showed the greatest antibacterial activity (p < 0.05). Moreover, the tested composites containing VS10 presented the lowest elution of monomers (p < 0.05). Conclusions: Innovative composites were developed with low monomers elution, evident antibacterial activity against S. gordonii and important remineralisation properties due to specific ions release. Clinical significance: Novel composites containing fluoride-doped calcium phosphates may be promising to modulate bacteria growth, promote remineralisation and reduce the risk of cytotoxicity related to monomersā elution.
- Effect of gastric acids on the mechanical properties of conventional and CAD/CAM resin composites : an in-vitro study
2024-07 Objectives: Dental erosion in patients with gastroesophageal reflux disease (GERD) is a current and frequent condition that may compromise the mechanical properties and clinical durability of resin-based composites (RBCs). This study assessed the mechanical properties of conventional and computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs subsequent to simulated gastric acid aging. Materials and method: Three conventional and three CAD/CAM composites were assessed. They were divided into an experimental group (exposed to simulated gastric acid aging) and a control group (no aging). Both groups were analyzed for Vickers microhardness (VHN), wear and flexural strength over a period of six months. The failure rate probability for each RBC was calculated through the Weibull cumulative distribution function (m). Statistical analysis was conducted using repeated measures ANOVA, 3-way ANOVA, a non-parametric Kruskal-Wallis and U Mann-Whitney tests (Ī± = 0.05). Results: The mechanical properties of all the RBCs dropped significantly after aging (p < 0.05). Lower VHN and flexural strength values, along with greater wear values were evident in the experimental groups, though the effects of the treatment varied between RBCs. The Weibull m of all the RBCs decreased over time. Conclusion: Conventional RBCs might show greater reduction in mechanical properties compared to CAD/CAM RBCs when exposed to gastric acid attack. Thus, CAD/CAM composites may represent a suitable choice for the treatment of patients presenting erosive issues.
- Release kinetics of monomers from dental composites containing fluoride-doped calcium phosphates
2023-07-14 This study analyse the type of release kinetic of specific monomers from dental resin composites containing various fluoride-doped calcium phosphates. The release behavior of urethane dimethacrylate (UDMA), ethoxylated bisphenol-A dimethacrylate (bis-EMA) and 1.6-hexanediol ethoxylate diacrylate (HEDA) was evaluated over a period of 35 days. Two tailored calcium phosphates doped with different concentrations of fluoride salts (VS10% and VS20%) were prepared and incorporated in the dimethacrylate matrix at various concentrations to generate a range of experimental composites. The release kinetics were characterized using mathematical models such as zero-order, first-order, Peppas and Higuchi models. The results showed that the first-order model best described the release kinetics. UDMA and HEDA exhibited significant differences in release compared to bis-EMA from day 1, while no significant differences were observed between UDMA and HEDA, except on day 35, when UDMA exhibited a higher release rate than HEDA. When comparing the release of each monomer, VS20-R20% had the highest total release percentage, with 3.10 Ā± 0.25%, whereas the composite VS10-R5% showed the lowest release percentage, with a total of 1.66 Ā± 0.08%. The release kinetics were influenced by the composition of the resin composites and the presence of calcium fluoride and sodium fluoride in the calcium phosphate played a role in the maximum amounts of monomer released. In conclusion, the release of monomers from the tested resin composites followed a first-order kinetic behaviour, with an initial rapid release that decreased over time. The composition of the resin monomers and the presence of fluoride salts influenced the release kinetics. The VS10-R5% and VS10-R10% resin composites exhibited the lowest total monomer release, suggesting its potential favourable composition with reduced monomer elution. These findings contribute to understanding the release behavior of dental resin composites and provide insights for the development of resin-based bioactive dental materials.
- Collagen-depletion strategies in dentin as alternatives to the hybrid layer concept and their effect on bond strengthw a systematic review
2022-07-29 Strategies aiming to improve the longevity of resinādentin adhesive interface developed so far have only been able to retard the problem. Different approaches are thus needed. The objective of this review was to determine whether the use of collagen-depletion strategies after acid-etching procedures may improve the bond strength of resin-based materials to dentin. A systematic review was planned following 2021 PRISMA statement guidelines, with a search strategy performed in five electronic databases: PubMed/Medline, Scopus, EMBASE, SciELO and IADR Abstract Archive (last search: 17/01/2022). Inclusion criteria encompassed studies which evaluated a collagen-depletion strategy in acid-etched human dentin and tensile/shear bond strength tests. Risk of bias assessment was carried out by two reviewers, working independently on an adapted five-domain risk of bias (RoB) checklist for laboratory studies. Results were synthesized qualitatively, as a meta-analysis was not possible due to limited number of studies and their RoB. A total of eight studies were eligible for inclusion in the systematic review after inclusion/exclusion criteria application. Out of these, two evaluated the effect of using NaOCl followed by an antioxidant, and the remaining six evaluated different enzymatic treatments (bromelain, chondroitinase ABC, papain, and trypsin). None of the studies reported a decrease of bond strength when a collagen-depletion strategy was used, in comparison to traditional hybrid layers (control). All enzymatic treatment studies which respected the inclusion criteria improved the bond strength to dentin. Some specific collagen-depletion strategies seem to play a favorable role in improving immediate bond strengths to dentin. Further research with sound methodology is required to consolidate these findings, since limitations in RoB and a low number of studies were found. The assessment of further proteolytic agents and long-term outcomes is also required.
- Effect of bonding protocols on the performance of luting agents applied to CAD-CAM composites
2022-08-31 This in vitro study aimed to evaluate the effect of different bonding strategies on the microshear bond strength ( SBS) of luting agents to CADāCAM composites. Surface scanning electron microscopy (SEM) and spectroscopy by energy-dispersive X-ray spectroscopy (EDS) were performed to analyze the surfaces of the composite before and after bonding treatment. Three CADāCAM composites were evaluated: Lava Ultimate restorative (LU), Brava Blocks (BR), and Vita Enamic (VE). The LU and BR surfaces were sandblasted using aluminum oxide, while the VE surfaces were etched using a 5% hydrofluoric acid gel according to the manufacturersā recommendations. All surfaces were subjected to the following bonding strategies (n = 15): adhesive with silane and MDP (ScotchBond Universal, 3M Oral Care, St Paul, MI, USA); adhesive with MDP (Ambar Universal, FGM, Joinville, Brazil); adhesive without silane or MDP (Prime&Bond Elect, Dentsply Sirona, Charlotte, NC, USA), pure silane without MDP (Angelus, Londrina, Brazil), and pure silane with MDP (Monobond N, Ivoclar Vivadent, Schaan, Liechtenstei). Afterwards, tygons were filled with RelyX Ultimate (3M Oral Care), AllCem (FGM), or Enforce (Dentsply Sirona), which were light-cured and subjected to the SBS test. Data were analyzed using two-way ANOVA and Bonferroniās post hoc test ( = 0.05). Additional blocks (n = 15) were subjected to scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) before and after the surface treatment. The SBS values on VE surfaces were higher than those observed on LU and BR surfaces (p < 0.001). Silane without MDP (Allcem) promoted the highest SBS values, while silane with MDP (RelyX Ultimate) provided the highest values among all bonding strategies (p < 0.001). Enforce promoted no significant difference in SBS values. SEM and EDS analyses detected noticeable changes to the surface morphology and composition after the surface treatment. The effectiveness of the bonding strategy may vary according not only to the CADāCAM composite but also to resin cement/bonding agent/silane used.
- Antibacterial effect of triazine in barrier membranes with therapeutic activity for guided bone regeneration
2022-10-23 Objective: This study aimed to develop polymer-based barrier membranes based on poly(butylene-adipate-co-terephthalate) (PBAT) with the addition of 1,3,5-triacriloilhexahydro-1,3,5- triazine (TAT). Materials and Methods: Polymeric solutions were used to produce membranes with 5 wt% and 10 wt% of TAT by solvent casting. Membranes without the addition of TAT were used as controls. The membranes were chemically characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA); surface properties were assessed by profilometry and contact angle; the mechanical behavior was evaluated by a tensile test, and the biological properties were assessed by directāindirect cell viability and antibacterial activity by S. mutans and S. aureus colonyforming units. Results: TAT was detected in the FTIR and TGA analyses and modified the top surface of the membranes, increasing their roughness and wetness in both concentrations compared to the control group (p < 0.05). The addition of TAT, regardless of concentration, reduced the tensile strength and increased membrane stiffness (p < 0.05). The cell viability of 5 wt% TAT and 10 wt% TAT was 86.37% and 82.36%, respectively. All tested concentrations reduced the formation of biofilm on the membranes when compared to the control. Conclusion: The addition of TAT successfully resulted in the antimicrobial ability of PBAT-based barrier membranes, while it maintained acceptable levels of cell viability in membranes with adequate handling and surface properties.
- Compressive strength and porosity evaluation of innovative bidirectional spiral winding fiber reinforced composites
2022-11-15 The aim of this in vitro study was to investigate the compressive strength and the bulk porosity of a bidirectional (bFRC) and an experimental bidirectional spiral winding reinforced fiber composite (bswFRC). Cylindrical-shape specimens were prepared for each material group and processed for the evaluation of compressive strength after different storage conditions (dry, 1 and 3 months) in distilled water at 37 C. The specimens were also assessed for the degree of bulk porosity through X-ray tomography. A scanning electron microscope (SEM) was used to determine the fracture mode after a compressive strength test. Data were statistically analyzed using Two-Way Analysis of Variance (ANOVA). A significantly lower compressive strength was obtained in dry conditions, and after 1 month of water immersion, with the specimens created with bFRC compared to those made with bswFRC (p < 0.05). No significant difference (p > 0.05) was found between the two groups after 3 months of water immersion. However, the presence of water jeopardized significantly the compressive strength of bswFRC after water storage. The type of fracture was clearly different between the two groups; bswFRC showed a brutal fracture, whilst bFRC demonstrated a shear fracture. The bswFRC demonstrated higher pore volume density than bFRC. In conclusion, bswFRC is characterized by greater compressive strength compared to bFRC in dry conditions, but water-aging can significantly decrease the mechanical properties of such an innovative FRC. Therefore, both the novel bidirectional spiral winding reinforced fiber composites (bswFRC) and the bidirectional fiber reinforced composites (bFRC) might represent suitable materials for the production of post-and-core systems via CAD/CAM technology. These findings suggest that both FRC materials have the potential to strengthen the endodontically treated teeth.
- RoBDEMAT a risk of bias tool and guideline to support reporting of pre-clinical dental materials research and assessment of systematic reviews
2022-12-27 Objectives: To develop a risk of bias tool for pre-clinical dental materials research studies that aims to support reporting of future investigations and improve assessment in systematic reviews. Methods: A four-stage process following EQUATOR network recommendations was followed, which included project launch, literature review, Delphi process and the tool finalization. With the support of the European Federation of Conservative Dentistry (EFCD) and the Dental Materials Group of the International Association for Dental Research (DMG-IADR), a total of 26 expert stakeholders were included in the development and Delphi vote of the initial proposal. The proposal was built using data gathered from the literature review stage. During this stage, recent systematic reviews featuring dental materials research, and risk of bias tools found in the literature were comprehensively scanned for bias sources. The experts thus reached a consensus for the items, domains and judgement related to the tool, allowing a detailed guide for each item and corresponding signalling questions. Results: The tool features nine items in total, spread between 4 domains, pertaining to the following types of bias: bias related to planning and allocation (D1), specimen preparation (D2), outcome assessment (D3) and data treatment and outcome reporting (D4). RoBDEMAT, as presented, features signalling questions and a guide that can be used for RoB judgement. Its use as a checklist is preferred over a final summary score. Conclusion: RoBDEMAT is the first risk of bias tool for pre-clinical dental materials research, supported and developed by a broad group of expert stakeholders in the field, validating its future use. Clinical significance: This new tool will contribute the study field by improving the scientific quality and rigour of dental materials research studies and their systematic reviews. Such studies are the foundation and support of future clinical research and evidence-based decisions.