Facultad de Ciencias de la Salud
Permanent URI for this communityhttps://hdl.handle.net/10637/2790
Search Results
- The kinetoplastid chemotherapy revisited: current drugs, recent advances and future perspectives
2010 Leishmaniasis, African sleeping sickness and Chagas disease, caused by the kinetoplastid parasites Leishmania spp, Trypanosoma brucei and Trypanosoma cruzi, respectively, are among the most important parasitic diseases, affecting millions of people and considered to be within the most relevant group of neglected tropical diseases. The main alternative to control such parasitosis is chemotherapy. Nevertheless, the current chemotherapeutic treatments are far from being satisfactory. This review outlines the current understanding of different drugs against leishmaniasis, African sleeping sickness and Chagas disease, their mechanism of action and resistance. Recent approaches in the area of anti-leishmanial and trypanocidal therapies are also enumerated, new modulators from the mode of action, development of new formulations of old drugs, therapeutic switching and “in silico” drug design.
- In vivo and in vitro anti-leishmanial activities of 4-nitro-N-pyrimidin- and N-pyrazin-2-ylbenzenesulfonamides, and N2-(4-nitrophenyl)-N1-propylglycinamide
2009-11 A series of compounds containing the nitrobenzene and sulfonamido moieties were synthesized and their leishmanicidal effect was assessed in vitro against Leishmania infantum promastigotes. Among the compounds evaluated, the p-nitrobenzenesulfonamides 4Aa and 4Ba, and the p-nitroaniline 5 showed significant activity with a good selectivity index. In a Balb/c mice model of L. Infantum, administration of compounds 4Aa, 4Ba or 5 (5 mg/kg/day for 10 days, injected ip route) led to a clear-cut parasite burden reduction (ca. 99%). In an attempt to elucidate their mechanism of action, the DNA interaction of 4Aa and 5 was investigated by means of viscosity studies, thermal denaturation and nuclease activity assay. Both compounds showed nuclease activity in the presence of copper salt. The results suggest that compounds 4Aa, 4Ba and 5 represent possible candidates for drug development in the therapeutic control of leishmaniasis.