Facultad de Ciencias de la Salud

Permanent URI for this communityhttps://hdl.handle.net/10637/2790

Search Results

Now showing 1 - 10 of 15
  • Thumbnail Image
    Publication
    UCH
    Glutathione and a pool of metabolites partly related to oxidative stress are associated with low and high myopia in an altered bioenergetic environment2024-04-27

    Oxidative stress forms part of the molecular basis contributing to the development and manifestation of myopia, a refractive error with associated pathology that is increasingly prevalent worldwide and that subsequently leads to an upsurge in degenerative visual impairment due to conditions that are especially associated with high myopia. The purpose of our study was to examine the interrelation of potential oxidative-stress-related metabolites found in the aqueous humor of high-myopic, low-myopic, and non-myopic patients within a clinical study. We conducted a cross-sectional study, selecting two sets of patients undergoing cataract surgery. The first set, which was used to analyze metabolites through an NMR assay, comprised 116 patients. A total of 59 metabolites were assigned and quantified. The PLS-DA score plot clearly showed a separation with minimal overlap between the HM and control samples. The PLS-DA model allowed us to determine 31 major metabolite differences in the aqueous humor of the study groups. Complementary statistical analysis of the data allowed us to determine six metabolites that presented significant differences among the experimental groups (p < 005). A significant number of these metabolites were discovered to have a direct or indirect connection to oxidative stress linked with conditions of myopic eyes. Notably, we identified metabolites associated with bioenergetic pathways and metabolites that have undergone methylation, along with choline and its derivatives. The second set consisted of 73 patients who underwent a glutathione assay. Here, we showed significant variations in both reduced and oxidized glutathione in aqueous humor among all patient groups (p < 0.01) for the first time. Axial length, refractive status, and complete ophthalmologic examination were also recorded, and interrelations among metabolic and clinical parameters were evaluated.

  • Thumbnail Image
    Publication
    UCH
    Phytotherapeutic alternatives for neurodegenerative dementias: scientific review, discussion and therapeutic proposal2023-03

    The incidence and prevalence of age-related neurodegenerative dementias have been increasing. There is no curative therapy and conventional drug treatment can cause problems for patients. Medicinal plants traditionally used for problems associated with ageing are emerging as a therapeutic resource. The main aim is to give a proposal for use and future research based on scientific knowledge and tradition. A literature search was conducted in several searchable databases. The keywords used were related to neurodegenerative dementias, ageing and medicinal plants. Boolean operators and filters were used to focus the search. As a result, there is current clinical and preclinical scientific information on 49 species used in traditional medicine for ageing-related problems, including neurodegenerative dementias. There are preclinical and clinical scientific evidences on their properties against protein aggregates in the central nervous system and their effects on neuroinflammation, apoptosis dysregulation, mitochondrial dysfunction, gabaergic, glutamatergic and dopaminergic systems alterations, monoamine oxidase alterations, serotonin depletion and oestrogenic protection. In conclusion, the potential therapeutic effect of the different medicinal plants depends on the type of neurodegenerative dementia and its stage of development, but more clinical and preclinical research is needed to find better, safer and more effective treatments.

  • Thumbnail Image
    Publication
    UCH
    Sequences of alterations in inflammation and autophagy processes in Rd1 mice2023-08-22

    (1) Background: the aim of this work was to study microglia and autophagy alterations in a one retinitis pigmentosa (RP) model at different stages of the disease (when rods are dying and later, when there are almost no rods, and cones are the cells that die. (2) Methods: rd1 mice were used and retinas obtained at postnatal days (PN) 11, 17, 28, 35, and 42. Iba1 (ionized calcium-binding adapter molecule 1) was the protein selected to study microglial changes. The macroautophagy markers Beclin-1, Atg5, Atg7, microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (LAMP2) (involved in chaperone-mediated autophagy (CMA)) were determined. (3) Results: the expression of Iba1 was increased in rd1 retinas compared to the control group at PN17 (after the period of maximum rod death), PN28 (at the beginning of the period of cone death), and PN42. The number of activated (ameboid) microglial cells increased in the early ages of the retinal degeneration and the deactivated forms (branched cells) in more advanced ages. The macroautophagy markers Atg5 at PN11, Atg7 and LC3II at PN17, and Atg7 again at PN28 were decreased in rd1 retinas. At PN35 and PN42, the results reveal alterations in LAMP2A, a marker of CMA in the retina of rd1 mice. (4) Conclusions: we can conclude that during the early phases of retinal degeneration in the rd1 mouse, there is an alteration in microglia and a decrease in the macroautophagy cycle. Subsequently, the CMA is decreased and later on appears activated as a compensatory mechanism.

  • Thumbnail Image
    Publication
    UCH
    High myopia and the complement system : factor H in myopic maculopathy2021-06-12

    High myopia (HM) is both a medical problem and refractive error of the eye owing to excessive eyeball length, which progressively makes eye tissue atrophic, and is one of the main causes for diminishing visual acuity in developed countries. Despite its high prevalence and many genetic and proteomic studies, no molecular pattern exists that explain the degenerative process underlying HM, which predisposes patients to other diseases like glaucoma, cataracts, retinal detachment and chorioretinal atrophy that affect the macular area. To determine the relation between complement Factors H (CFH) and D (CFD) and the maculopathy of patients with degenerative myopia, we studied aqueous humor samples that were collected by aspiration from 122 patients during cataract surgery. Eyes were classified according to eyeball axial length as high myopia (axial length > 26 mm), low myopia (axial length 23.5–25.9 mm) and control (axial length < 23.4 mm). The degree of maculopathy was classified according to fundus oculi findings following IMI’s classification. Subfoveal choroid thickness was measured by optical coherence tomography. CFH and CFD measurements were taken by ELISA. CFH levels were significantly high in the high myopia group vs. the low myopia and control groups (p < 0.05). Significantly high CFH values were found in those eyes with choroid atrophy and neovascularization (p < 0.05). In parallel, the CFH concentration correlated inversely with choroid thickness (R = 􀀀0.624). CFD levels did not correlate with maculopathy. All the obtained data seem to suggest that CFH plays a key role in myopic pathology.

  • Thumbnail Image
    Publication
    UCH
    Lipid peroxidation in subretinal fluid : some light on the prognosis factors2021-03-30

    The aim of this study was to identify a relation between the clinical characteristics and differences in lipid peroxidation in the subretinal fluid (SRF) of rhegmatogenous retinal detached patients by malondialdehyde (MDA) quantification. We collected 65 SRF samples from consecutive patients during scleral buckling surgery in rhegmatogenous retinal detachment (RRD) eyes. In addition to a complete ophthalmic evaluation, we studied the refractive status, evolution time, and the number of detached retinal quadrants to establish the extension of RRD.We studied the clinical aspects and oxidative stress and compared the characteristics among groups. We found that neither the evolution time of RRD nor the patients’ age correlated with the MDA concentration in the SRF. The MDA and the protein content of the SRF increased in the patients with high myopia and with more extended RRD. Our results suggest that oxidative imbalance was important in more extended retinal detachment (RD) and in myopic eyes and should be taken into account in the managing of these cases.

  • Thumbnail Image
    Publication
    UCH
    Medicinal plants and natural products as neuroprotective agents in age-related macular degeneration2020-12-01

    The retina may suffer neurodegenerative damages, as other tissues of the central nervous system do, and serious eye diseases may develop. One of them is age-related macular degeneration, which causes progressive loss of vision due to retina degeneration. Treatment of age-related macular degeneration focuses on antioxidant agents and anti-vascular endothelial growth factor compounds, among others, that prevent/ diminish oxidative stress and reduce neovascularisation respectively. The phytochemicals, medicinal plants and/or plant-diet supplements might be a useful adjunct in prevention or treatment of age-related macular degeneration owing to their antioxidant and anti-vascular endothelial growth factor properties. This review article presents the most investigated plants and natural products in relation to age-related macular degeneration, such as saffron, ginkgo, bilberry and blueberry, curcuma or turmeric, carotenoids, polyphenols, and vitamins C and E. This study provides up-to-date information on the effects, treatments, safety and efficiency of these phytotherapy products.

  • Thumbnail Image
    Publication
    UCH
    Imbalance between oxidative stress and growth factors in human high myopia2020-05-14

    Myopia is one of the commonest eye pathologies that could affect 2.56 billion people by 2020. Today high myopia is a leading cause of blindness worldwide due to associated ocular illness. Nevertheless, the cellular bases for these diseases to develop are unclear in many areas. We conducted a prospective study of oxidative stress and growth factors in human myopic and non myopic eyes in an attempt to increase our understanding of the underlying physiopathological conditions to adequately early diagnose, prevent and treat the retina problem that derives from myopia. Aqueous humor samples were obtained from 41 patients being operated for cataracts in our hospital. Axial length, refractive status and complete ophthalmologic examination were recorded. The VEGF and HGF levels were determined by an ELISA kit. Total antioxidant capacity and total nitrites/nitrate levels were established with a lab kit. We show for the first time an increase in the total nitrite levels in high myopia. We also propose for the first time the concurrence of three factors: myopia, oxidative stress, and oxidative stress together with growth factors in the same group of patients. In this way, it would not be accurate to envision high myopia as a type of normal myopia, but one with more diopters or longer axial length.

  • Thumbnail Image
    Publication
    UCH
    Looking into aqueous humor through metabolomics spectacles - exploring its metabolic characteristics in relation to myopia2016-08-16

    Aqueous humor is the transparent fluid found in the anterior chamber of the eye that provides the metabolic requirements to the avascular tissues surrounding it. Despite the fact that metabolomics could be a powerful tool in the characterization of this biofluid and in revealing metabolic signatures of common ocular diseases such as myopia, it has never to our knowledge previously been applied in humans. In this research a novel method for the analysis of aqueous humor is presented to show its application in the characterization of this biofluid using CE–MS. The method was extended to a dual platform method (CE–MS and LC–MS) in order to compare samples from patients with different severities of myopia in order to explore the disease from the metabolic phenotype point of view. With this method, a profound knowledge of the metabolites present in human aqueous humor has been obtained: over 40 metabolites were reproducibly and simultaneously identified from a low volume of sample by CE–MS, including among others, a vast number of amino acids and derivatives. When this method was extended to study groups of patients with high or low myopia in both CE–MS and LC–MS, it has been possible to identify over 20 significantly different metabolite and lipid signatures that distinguish patients based on the severity of myopia. Among these, the most notable higher abundant metabolites in high myopia were aminooctanoic acid, arginine, citrulline and sphinganine while features of low myopia were aminoundecanoic acid, dihydro-retinoic acid and cysteinylglycine disulfide. This dual platform approach offered complementarity such that different metabolites were detected in each technique. Together the experiments presented provide a whelm of valuable information about human aqueous humor and myopia, proving the utility of non-targeted metabolomics for the first time in analyzing this type of sample and the metabolic phenotype of this disease.