Facultad de Ciencias de la Salud
Permanent URI for this communityhttps://hdl.handle.net/10637/2790
Search Results
- Topical ocular administration of progesterone decreases photoreceptor cell death in Retinal Degeneration Slow (rds) mice
2022-03-09 Retinitis pigmentosa (RP) is an inherited eye disorder which triggers a cascade of retinal disorders leading to photoreceptor cell death and for which there is currently no effective treatment. The purpose of this research was to study whether ocular administration of a solution of progesterone (PG) in -cyclodextrins (CD) could delay photoreceptor cell death and counteract the gliosis process in an animal model of RP (rds mice). The possible effect of PG reaching the contralateral eye through the circulatory system was also evaluated. Finally, this research discusses and evaluates the diffusion of the drug from possible topical formulations for ocular administration of PG. A group of rds mice received one drop of a solution of PG in CD every 12 h for 10 days to the left eye, while the right eye was left untreated. Another group of rds mice (control) received the drug vehicle (PBS) on the left eye and, again, the right eye was left untreated. Once the treatment was finished on postnatal day 21, the animals were euthanized and histological immunofluorescence studies (TUNEL, GFAP, and DAPI staining) were carried out. Our results showed that the administration of a solution of PG in CD (CD-PG) as drops significantly decreased cell death and inflammation in the retina of the PG-treated eyes of rds mice. No effect was seen in the contralateral eye from PG that may have entered systemic circulation. In conclusion, CD-PG applied topically as drops to the eye decreases photoreceptor cell death in the early stages of RP, delaying vision loss and decreasing gliosis.
- Micelles of progesterone for topical eye administration : interspecies and intertissues differences in ex vivo ocular permeability
2020-07-26 Progesterone (PG) may provide protection to the retina during retinitis pigmentosa, but its topical ocular supply is hampered by PG poor aqueous solubility and low ocular bioavailability. The development of e cient topical ocular forms must face up to two relevant challenges: Protective barriers of the eyes and lack of validated ex vivo tests to predict drug permeability. The aims of this study were: (i) To design micelles using Pluronic F68 and Soluplus copolymers to overcome PG solubility and permeability; and (ii) to compare drug di usion through the cornea and sclera of three animal species (rabbit, porcine, and bovine) to investigate interspecies di erences. Micelles of Pluronic F68 (3–4 nm) and Soluplus (52–59 nm) increased PG solubility by one and two orders of magnitude, respectively and exhibited nearly a 100% encapsulation e ciency. Soluplus systems showed in situ gelling capability in contrast to the low viscosity Pluronic F68 micelles. The formulations successfully passed the hen’s egg-chorioallantoic membrane test (HET-CAM) test. PG penetration through rabbit cornea and sclera was faster than through porcine or bovine cornea, although the di erences were also formulation-dependent. Porcine tissues showed intermediate permeability between rabbit and bovine. Soluplus micelles allowed greater PG accumulation in cornea and sclera whereas Pluronic F68 promoted a faster penetration of lower PG doses.