Facultad de Ciencias de la Salud
Permanent URI for this communityhttps://hdl.handle.net/10637/2790
Search Results
- Role of Gut Microbiome in Atherosclerosis: molecular and therapeutic aspects
2023 Atherosclerosis is one of the most relevant and prevalent cardiovascular diseases of our time. It is one of the pathological entities that increases the morbidity and mortality index in the adult population. Pathophysiological connections have been observed between atherosclerosis and the gut microbiome (GM), represented by a group of microorganisms that are present in the gut. These microorganisms are vital for metabolic homeostasis in humans. Recently, direct and indirect mechanisms through which GM can affect the development of atherosclerosis have been studied. This has led to research into the possible modulation of GM and metabolites as a new target in the prevention and treatment of atherosclerosis. The goal of this review is to analyze the physiopathological mechanisms linking GM and atherosclerosis that have been described so far. We also aim to summarize the recent studies that propose GM as a potential target in atherosclerosis management.
- Non-albuminuric Diabetic Kidney Disease phenotype: beyond albuminuria
2022-11 Diabetic kidney disease (DKD) is the leading cause of chronic and end-stage kidney disease worldwide. Its pathogenic mechanism is complex, and it can affect the entire structures of the kidneys such as the glomerulus, tubules and interstitium. Currently, the urinary albumin excretion rate and the estimated glomerular filtration rate are widely accepted as diagnostic criteria. However, some studies have reported a different or non-classical clinical course of DKD, with some patients showing declined kidney function with normal levels of albuminuria, known as the 'non-albuminuric DKD' phenotype. The pathogenesis of this phenotype remains unclear, but some clinical and pathological features have been postulated. This review explores the evidence regarding this topic.
- Visualizing the atherosclerotic plaque: a chemical perspective
2014-02-14 Atherosclerosis is the major underlying pathologic cause of coronary artery disease. An early detection of the disease can prevent clinical sequellae such as angina, myocardial infarction, and stroke. The different imaging techniques employed to visualize the atherosclerotic plaque provide information of diagnostic and prognostic value. Furthermore, the use of contrast agents helps to improve signal-to-noise ratio providing better images. For nuclear imaging techniques and optical imaging these agents are absolutely necessary. We report on the different contrast agents that have been used, are used or may be used in future in animals, humans, or excised tissues for the distinct imaging modalities for atherosclerotic plaque imaging.
- Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy
2017-05-12 Rationale:Virtually all mesenchymal stem cell (MSC) studies assume that therapeutic effects accrue from local myocardial effects of engrafted MSCs. Because few intravenously administered MSCs engraft in the myocardium, studies have mainly utilized direct myocardial delivery. We adopted a different paradigm. Objective:To test whether intravenously administered MSCs reduce left ventricular (LV) dysfunction both post–acute myocardial infarction and in ischemic cardiomyopathy and that these effects are caused, at least partly, by systemic anti-inflammatory activities. Methods and Results:Mice underwent 45 minutes of left anterior descending artery occlusion. Human MSCs, grown chronically at 5% O2, were administered intravenously. LV function was assessed by serial echocardiography, 2,3,5-triphenyltetrazolium chloride staining determined infarct size, and fluorescence-activated cell sorting assessed cell composition. Fluorescent and radiolabeled MSCs (1×106) were injected 24 hours post–myocardial infarction and homed to regions of myocardial injury; however, the myocardium contained only a small proportion of total MSCs. Mice received 2×106 MSCs or saline intravenously 24 hours post–myocardial infarction (n=16 per group). At day 21, we harvested blood and spleens for fluorescence-activated cell sorting and hearts for 2,3,5-triphenyltetrazolium chloride staining. Adverse LV remodeling and deteriorating LV ejection fraction occurred in control mice with large infarcts (≥25% LV). Intravenous MSCs eliminated the progressive deterioration in LV end-diastolic volume and LV end-systolic volume. MSCs significantly decreased natural killer cells in the heart and spleen and neutrophils in the heart. Specific natural killer cell depletion 24 hours pre–acute myocardial infarction significantly improved infarct size, LV ejection fraction, and adverse LV remodeling, changes associated with decreased neutrophils in the heart. In an ischemic cardiomyopathy model, mice 4 weeks post–myocardial infarction were randomized to tail-vein injection of 2×106 MSCs, with injection repeated at week 3 (n=16) versus PBS control (n=16). MSCs significantly increased LV ejection fraction and decreased LV end-systolic volume. Conclusions:Intravenously administered MSCs for acute myocardial infarction attenuate the progressive deterioration in LV function and adverse remodeling in mice with large infarcts, and in ischemic cardiomyopathy, they improve LV function, effects apparently modulated in part by systemic anti-inflammatory activities.