2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- Field-based adipose tissue quantification in sea turtles using bioelectrical impedance spectroscopy validated with CT scans and deep learning
2022-12-01 Loss of adipose tissue in vertebrate wildlife species is indicative of decreased nutritional and health status and is linked to environmental stress and diseases. Body condition indices (BCI) are commonly used in ecological studies to estimate adipose tissue mass across wildlife populations. However, these indices have poor predictive power, which poses the need for quantitative methods for improved population assessments. Here, we calibrate bioelectrical impedance spectroscopy (BIS) as an alternative approach for assessing the nutritional status of vertebrate wildlife in ecological studies. BIS is a portable technology that can estimate body composition from measurements of body impedance and is widely used in humans. BIS is a predictive technique that requires calibration using a reference body composition method. Using sea turtles as model organisms, we propose a calibration protocol using computed tomography (CT) scans, with the prediction equation being: adipose tissue mass (kg) = body mass − (−0.03 [intercept] − 0.29 * length2/resistance at 50 kHz + 1.07 * body mass − 0.11 * time after capture). CT imaging allows for the quantification of body fat. However, processing the images manually is prohibitive due to the extensive time requirement. Using a form of artificial intelligence (AI), we trained a computer model to identify and quantify nonadipose tissue from the CT images, and adipose tissue was determined by the difference in body mass. This process enabled estimating adipose tissue mass from bioelectrical impedance measurements. The predictive performance of the model was built on 2/3 samples and tested against 1/3 samples. Prediction of adipose tissue percentage had greater accuracy when including impedance parameters (mean bias = 0.11%–0.61%) as predictor variables, compared with using body mass alone (mean bias = 6.35%). Our standardized BIS protocol improves on conventional body composition assessment methods (e.g., BCI) by quantifying adipose tissue mass. The protocol can be applied to other species for the validation of BIS and to provide robust information on the nutritional and health status of wildlife, which, in turn, can be used to inform conservation decisions at the management level.
- An unprecedented chlorine-containing piperamide from "Piper pseudoarboreum" as potential leishmanicidal agent
2019-04-01 A phytochemical investigation of the ethanolic extract of leaves from Piper pseudoarboreum led to the isolation of 3-chlorosintenpyridone 1, an unprecedented chlorinated piperamide, together with the known compounds 2-12. Their structures were established based on 1D and 2D (COSY, ROESY, HMQC, and HMBC) NMR spectroscopy, in addition to high resolution mass spectrometry. The proposed biosynthetic pathway of compound 1 is discussed. Compounds 1-12 were tested in vitro for their leishmanicidal potential against promastigote stages of Leishmania amazonensis, L braziliensis, L. guyanensis and L. infantum. Two compounds from this series, the alkamide 1 (IC50 3.4-5.2 μM) and the fatty acid 9 (IC50 18.7- 29.6 μM) displayed higher or similar potency to Miltefosine, used as the reference drug.