2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    UCH
    Methionine supplementation during pregnancy of goats improves kids' birth weight, body mass index, and postnatal growth pattern2022-07-18

    The last third of gestation is a period of high energy and protein demand for the dam to support fetal growth and the following onset of lactation. Methionine is an essential amino acid that contributes to protein formation, fetal development, and milk synthesis; thus, is likely to have positive effects on the weight and size of the newborn and, afterward, milk yield and milk composition, which may improve growth patterns of the progeny. To test these hypotheses, we used 60 pregnant multiparous Alpine goats with similar live weights and gestational ages (~Day 100 of pregnancy; Mean SD; 1410 14 days old and 50.4 6.6 kg) and were separated into two groups: control and supplemented with the delivery. Treatments were T-MET (n = 30; received 1% herbal methionine Optimethione® dry matter based on from Day 100 of the pregnancy to delivery) or T-CTL (n = 30; served as the control and did not receive methionine). The methionine powder provided individual supplementation and was adjusted every week as the live weight and dry matter intake changed. At birth, the weight, body mass index (BMI), birth type, and sex of the kids were determined. Subsequently, the progeny was weighed weekly up to weaning. Two weeks after parturition, the milk composition was recorded weekly, and the milk yield was recorded monthly. The maternal live weight at the start (Mean SEM; T-CTL: 50.5 1.1 vs. T-MET: 50.3 1.3 kg) and end (T-CTL: 54.2 1.3 vs. T-MET: 52.8 1.4 kg) of the experiment did not differ statistically among treatments (p > 0.05); however, daily live weight changes tended to differ between groups (T-CTL: 73 10 vs. T-MET: 51 7 g day􀀀1; p = 0.06). The birth weight (T-CTL: 3.1 0.1 vs. TMET: 3.5 0.1 kg; p < 0.001), daily live weight change (T-CTL: 121 6 vs. T-MET: 141 6 g day􀀀1; p < 0.01), and weaning weight (T-CTL: 8.3 0.2 vs. T-MET: 9.3 0.3 kg; p < 0.01) differed between treatments. The BMI at birth (T-CTL: 0.28 0.01 vs. T-MET: 0.3 0.01 units kg m􀀀2; p < 0.01) and at weaning (T-CTL: 0.85 0.1 kg vs. T-MET: 1.00 0.06 units kg m􀀀2; p < 0.05) differed between treatments. Milk components (protein, fat, lactose, and solids non-fat) and milk yield were similar between treatments (p > 0.05). It is concluded that the inclusion of methionine in the maternal goat diet during the last third of gestation increases the birth and growth variables of the progeny but without significant influence on the milk yield and composition.

  • Thumbnail Image
    Publication
    UCH
    Maternal supplementation with polyphenols and omega-3 fatty acids during pregnancy : prenatal effects on growth and metabolism2021-06-07

    Maternal supplementation with antioxidants and n-3 PUFAs may be a promising strategy to reduce the risk of intrauterine growth restriction and preterm delivery, which may diminish the appearance of low-birth-neonates. A previous studies showed beneficial outcomes of the combination of hydroxytyrosol and linoleic acid, but there is no data of its prenatal effects. The present study aimed to determine the possible prenatal implications of such maternal supplementation at prenatal stages in swine, a model of IUGR pregnancies. Results showed effects on litter size, with treated sows having larger litters and, therefore, smaller fetuses. However, the brain/head weight ratio showed a positive effect of the treatment in development, as well as in some other major organs like lungs, spleen, or kidneys. On the other hand, treated piglets showed better glycemic and lipidemic profiles, which could explain postnatal effects. However, further research on the implications of the treatment on litter size and prenatal and postnatal development must be done before practical recommendation can be given.

  • Thumbnail Image
    Publication
    UCH
    Do growing rabbits with a high growth rate require diets with high levels of essential amino acids? : a choice-feeding trial2021-03-15

    As a consequence of the genetic selection process in growing rabbits, there are currently fastgrowing animals exhibiting an average daily gain that may exceed 45 g/d. The protein requirements of these animals, namely amino acid requirements, may differ from animals with low growth rates. The objective of this work was to evaluate growth performance, the coefficient of total tract apparent digestibility (CTTAD), the apparent ileal digestibility (AID) of amino acids and nutrient retention of fast-growing rabbits when they had access to a diet with high levels of amino acids and/or a diet formulated with current nutritional recommendations in a choice-feeding trial. To this end, two diets were formulated: the M diet following current nutritional recommendations for growing rabbits (including 8.1, 5.8 and 6.9 g/kg dry matter (DM) of total lysine, sulphur amino acids and threonine, respectively) and the H diet with higher levels of total lysine, sulphur amino acids and threonine (9.4, 6.6 and 7.8 g/kg DM, respectively). A total of 220 weaned rabbits, from a paternal line selected for the growth rate, had free access to the M diet, the H diet or both (MH) diets from 28 to 63 days of age. The CTTAD of DM, crude protein and gross energy from 49 to 53 days of age as well as the AID of amino acids of the diets at 63 days of age were determined. Protein, amino acids and energy retained in the empty body from 28 to 63 days of age were also registered. No significant differences in growth performance, CTTAD, AID and nutrient retention between dietary treatments were observed. However, animals fed the H diet showed a higher AID of cysteine (p < 0.05) and higher threonine retention (p < 0.05) compared to the M diet. As regards the choice-feeding trial, MH animals showed a higher feed intake of the M diet compared to the H diet (+8.61%; p < 0.001), and furthermore, more than 50% of the animals preferred the M diet throughout the experimental period (p < 0.05). Our results suggest that animals with high growth rates do not show significantly higher productive traits when fed the H diet compared to the M diet. As regards choice feeding, MH animals were capable of choosing their preferred diet, showing high intra-individual repeatability in preference for the M diet. It would be interesting to continue studying this behaviour of choice based on amino acid levels.

  • Thumbnail Image
    Publication
    UCH
    How does protein nutrition affect the epigenetic changes in pig? : a review2021-02-19

    Epigenetic changes regulate gene expression and depend of external factors, such as environment and nutrition. In pigs, several studies on protein nutrition have been performed to improve productive and reproductive traits. Indeed, these studies aimed not only to determine broad protein requirements but also pigs’ essential amino acids requirements. Moreover, recent studies tried to determine these nutritional requirements for each individual, which is known as protein precision nutrition. However, nutritional changes could affect different epigenetic mechanisms, modifying metabolic pathways both in a given individual and its offspring. Modifications in protein nutrition, such as change in the amino acid profile, increase or decrease in protein levels, or the addition of metabolites that condition protein requirements, could affect the regulation of some genes, such as myostatin, insulin growth factor, or genes controlling cholesterol and glucose metabolism pathways. This review summarizes the impact of most common protein nutritional strategies on epigenetic changes and describes their effects on regulation of gene expression in pigs. In a context where animal nutrition is shifting towards precision protein nutrition (PPN), further studies evaluating the effects of PPN on animal epigenetic are necessary.

  • Thumbnail Image
    Publication
    UCH
    Effects of L-glutamine supplementation during the gestation of gilts and sows on the offspring development in a traditional swine breed2021-03-22

    The use of amino acids during pregnancy, such as glutamine (Gln), seems to be a promising strategy in selected swine breeds to improve the offspring prenatal development. The main goal of the current study was to assess the development of the offspring from parity 1–3 sows of a traditional breed, which were supplemented with 1% glutamine after Day 35 of gestation, under farm conditions. A total of 486 (288 treated) piglets from 78 (46 treated) Iberian sows were used. At birth and slaughterhouse, fatty acid composition, metabolism, and mTOR pathway gene expression were analyzed. At birth, treated newborns showed greater amounts of specific amino acids in plasma, such as glutamine, asparagine, or alanine, and Sn-3 fatty acids in cellular membranes than control newborns. The expression of genes belonging to mTOR Complex 1 was also higher in treated piglets with normal birth-weight. However, these findings did not improve productive traits at birth or following periods in litters from supplemented gilts (parity 1) or sows (parities 2–3). Thus, further research is needed to properly understand the effects of prenatal glutamine supplementation, particularly in traditional swine breeds.