2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- A high-fat diet modifies brain neurotransmitter profile and hippocampal proteome and morphology in an IUGR pig model
2022-08-22 Intrauterine Growth Restriction (IUGR) hinders the correct growth of the fetus during pregnancy due to the lack of oxygen or nutrients. The developing fetus gives priority to brain development (“brain sparing”), but the risk exists of neurological and cognitive deficits at short or long term. On the other hand, diets rich in fat exert pernicious effects on brain function. Using a pig model of spontaneous IUGR, we have studied the effect on the adult of a long-term high-fat diet (HFD) on the neurotransmitter profile in several brain areas, and the morphology and the proteome of the hippocampus. Our hypothesis was that animals affected by IUGR (born with low birth weight) would present a different susceptibility to an HFD when they become adults, compared with normal birth-weight animals. Our results indicate that HFD affected the serotoninergic pathway, but it did not provoke relevant changes in the morphology of the hippocampus. Finally, the proteomic analysis revealed that, in some instances, NBW and LBW individuals respond to HFD in different ways. In particular, NBW animals presented changes in oxidative phosphorylation and the extracellular matrix, whereas LBW animals presented differences in RNA splicing, anterograde and retrograde transport and the mTOR pathway.
- Obesity and metabolic traits after high-fat diet in Iberian pigs with low birth weight of placental origin
2022-10-19 Intrauterine growth restriction (IUGR) and later obesity and metabolic disorders have classically been associated with maternal malnutrition, but most cases of IUGR are related to placental insufficiency. The current study, using a swine model for IUGR and obesity, aimed to determine the interaction of birth weight (categorized as low birth weight [LBW] or normal birth-weight [NBW]) and postnatal diet (categorized as maintenance diet [MD] or fattening diet [FD]) on body weight, adiposity and metabolic traits. FD induced higher body weight and adiposity (both p < 0.0001), with higher fructosamine levels (p < 0.005) and a trend toward higher HOMA- index (p = 0.05). NBW pigs remained heavier than LBW pigs during the early juvenile period (p < 0.005), but there were no differences at later stages. There were no differences in metabolic traits during juvenile development, but there were differences in adulthood, when LBW pigs showed higher glucose and lower insulin levels than NBW pigs (both p < 0.05). These results suggest that (a) FD allows LBW offspring to achieve similar obesity in adulthood as NBW offspring, and (b) glucose metabolism is more compromised in obese LBW than obese NBW pigs. The comparison of our data with previous studies highlights significant differences between offspring with LBW induced by maternal malnutrition or placental insufficiency, which should be considered when studying the condition.
- Effects of free-fatty-acid content and saturation degree of the dietary oil sources on lipid-class content and fatty-acid digestibility along the gastrointestinal tract in broilers from 22 to 37 days of age
2021-09-22 The aim of the present study is to assess the effect of the free-fatty-acid (FFA) content and saturation degree of dietary fat (added at 6%) on the fattyacid (FA) digestibility and lipid-class content along the gastrointestinal tract and excreta in broilers from 22 to 37 d of age. This is essential to determine the potential use of acid oils (refining by-products rich in FFA) in broiler diets as an alternative to crude oils. The study consisted of a 2 £ 4 factorial arrangement, which included 2 fat sources (soybean oils − unsaturated, or palm oils − saturated) and 4 levels of FFA (5, 15, 35, and 50%). Samples of digestive content of the gizzard, duodenum, jejunum, ileum and of the excreta were obtained at 37 d of age. Irrespective of the dietary fat source, more than 80% of total FA (TFA) was absorbed in the jejunum. Broilers fed with unsaturated diets had a higher absorption efficiency of FA than did those fed with saturated diets. This conclusion is supported by the lower FFA content and the higher TFA and polyunsaturated FA (PUFA) digestibility coefficients in the ileum (P < 0.001) observed in the former group. The dietary FFA level did not affect the FA absorption process as much as the dietary fat source did. This was supported by the lack of statistical differences among the diets with a similar saturation degree but rather different levels of FFA, for TFA, saturated FA, and PUFA digestibility coefficients both in the jejunum and ileum. However, the interactions reported in the ileum for triacylglycerol and diacylglycerol contents (P < 0.001), as well as for monounsaturated FA digestibility coefficients (P < 0.05) show that the dietary FFA content affects the FA absorption process. The present results show that the inclusion of acid oils in grower-finisher broiler diets with FFA levels up to 35% does not have a negative impact on the FA absorption process.
- Replacement of palm oil with soybean acid oil in broiler chicken diet : fat digestibility and lipid class content along the intestinal tract
2021-09-03 This study aimed to evaluate the replacement of palm oil (P) with increasing levels of soybean acid oil (SA), a by-product of soybean oil (S) refining, on lipid class content and fatty acid (FA) digestibility in the intestine and excreta of chickens at 11 and 35 days (d). Five experimental diets were obtained by supplementing a basal diet with 6% of P (P6), 6% of SA (SA6), 4% of P + 2% SA (P4- SA2), 2% of P + 4% of SA (P2-SA4) and 6% of S (S6). A total of 480 one-d-old female broiler chickens (Ross 308) were housed in metabolic cages (6 cages/treatment, with 16 birds/cage). Replacing P with SA improved fat absorption at 11 and 35 d (p < 0.05), but not feed AME values and saturated FA (SFA) digestibility at 11 d. As age increased, the absorption of SFA and free fatty acids (FFA) improved, and the contribution of the upper ileum to FA absorption increased (p < 0.05). At 35 d, SA6 (56% FFA) and P2-SA4 (40% FFA, 2.6 unsaturated-to-saturated FA ratio) could replace S6 without impairing fat utilization. The replacement of P with SA represents a suitable strategy to use this by-product.
- Soybean oil replacement by palm fatty acid distillate in broiler chicken diets : fat digestibility and lipid-class content along the intestinal tract
2021-04-06 Palm fatty acid distillate (PFAD) is a by-product of palm oil (P) refining. Its use in chicken diets is a way to reduce the cost of feed and the environmental impact. Its low unsaturated:saturated fatty acid ratio (UFA:SFA) and its high free fatty acid (FFA) level could be partially counteracted by its blending with soybean oil (S). The objective was to assess the effect of replacing S with different levels of PFAD on lipid-class content and fatty acid (FA) digestibility along the intestinal tract and in the excreta of 11 and 35-day-old broiler chickens. Five experimental diets were prepared by supplementing a basal diet with S (S6), PFAD (PA6), two blends of them (S4-PA2 and S2-PA4), or P (P6) at 6%. Replacing S with PFAD did not affect performance parameters (p > 0.05) but negatively affected feed AME, FA digestibility, and FFA intestinal content (p < 0.05), especially in starter chicks. Including PFAD delayed total FA (TFA) absorption (p < 0.05) at 11 days, but at 35 days it did not affect the TFA absorption rate. The use of PFAD blended with S, when FFA 30% and UFA:SFA 2.6, led to adequate energy utilization in broiler grower-finisher diets.
- Effects of dietary free fatty-acid content and saturation degree on lipid-class composition and fatty-acid digestibility along the gastrointestinal tract in broiler starter chickens
2019-10-01 The aim of the present study is to assess the effect of the dietary free fatty acid (FFA) content and dietary fat saturation degree on the fatty-acid (FA) digestibility and lipid-class content along the gastrointestinal tract and excreta in broiler chickens. The 8 experimental diets resulted from replacing crude soybean oil with soybean acid oil from chemical refining, or crude palm oil with palm FA distillate from physical refining. Thus, there were 4 soybean and 4 palm diets with 6% added fat varying in their FFA% (5, 15, 35, and 50%). Samples of digestive content (gizzard, duodenum, jejunum, and ileum) and excreta were collected at 14 D for the determination of the FA digestibility and lipid-class content. The total FA digestibility coefficients reported for the chickens fed S diets in the jejunum, ileum, and excreta were higher than for those fed P diets (P ≤ 0.02). The general greater digestibility of the unsaturated diets was mainly explained by a higher contribution of the ileum to the absorption of saturated FA. The dietary FFA content mainly affected the FA absorption process. The diets with 50% FFA presented lower saturated FA digestibility coefficients in the jejunum and ileum (P ≤ 0.03), and higher content of FFA in the ileum and excreta (P ≤ 0.014), in comparison to the diets with 5% FFA. The 15% FFA diets were not different from the 5% FFA diets, regarding the saturated FA digestibility in the jejunum and excreta, and the FFA content in the ileum and excreta. It was concluded that unsaturated diets with moderate content of dietary FFA (up to 15%) could be used in broiler-chicken starter diets, as they led to similar FA absorption and performance results to the diets with the lowest dietary FFA content. From the present study, it has also been concluded that dietary saturated FA content has a greater impact on FA absorption than the dietary FFA content has.