2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- Antimicrobial resistance in companion animals : a new challenge for the one health approach in the European Union
2022-04-24 Antimicrobial resistance (AMR) and the increase in multi-resistant bacteria are among the most important threats to public health worldwide, according to the World Health Organisation (WHO). Moreover, this issue is underpinned by the One Health perspective, due to the ability of AMR to be transmitted between animals and humans living in the same environment. Therefore, since 2014 different surveillance and control programmes have been established to control AMR in commensal and zoonotic bacteria in production animals. However, public health authorities’ reports on AMR leave out companion animals, due to the lack of national programmes and data collection by countries. This missing information constitutes a serious public health concern due to the close contact between companion animals, humans and their surrounding environment. This absence of control and harmonisation between programmes in European countries leads to the ineffectiveness of antibiotics against common diseases. Thus, there is a pressing need to establish adequate surveillance and monitoring programmes for AMR in companion animals and further develop alternatives to antibiotic use in this sector, considering the impact this could have on the gut microbiota. In this context, the aim of this review is to evaluate the current control and epidemiological situations of AMR in companion animals in the European Union (EU), as well as the proposed alternatives to antibiotics.
- Antimicrobial resistant "Salmonella" in chelonians : assessing its potential risk in zoological institutions in Spain
2022-05-31 Salmonella is mostly noted as a food-borne pathogen, but contact with chelonians has also been reported as a source of infection. Moreover, high levels of antimicrobial resistance (AMR) have been reported in Salmonella isolated from wild and captive reptiles. The aim of this study was to assess the occurrence of Salmonella AMR carriage by chelonians admitted to two zoological institutions in Spain, characterizing the isolates to assess the Salmonella AMR epidemiology in wildlife. To this end, 152 chelonians from nine species were sampled upon their arrival at the zoological nuclei. Salmonella identification was based on ISO 6579-1:2017 (Annex D), isolates were serotyped and their AMR analysed according to the EU Decision 2013/652. Moreover, the genetic relationship of the isolates was assessed by pulsed-field gel electrophoresis (PFGE). Results showed 19% (29/152) of the chelonians positive to Salmonella, all of them tortoises. For all isolates, 69% (20/29) were resistant and 34% (10/29) multidrug-resistant (MDR) strains. PFGE clustered isolates according to the serovar, confirming a low genetic diversity. In conclusion, this study shows a high presence of MDR Salmonella strains in tortoises at their entry into zoological nuclei. This condition highlights the need to establish Salmonella detection protocols for the entry of animals into these centres.
- Multidrug-resistant "Campylobacer jejuni" on swine processing at a slaughterhouse in Eastern Spain
2021-05-08 Campylobacteriosis is the most commonly reported gastrointestinal disease in humans in the EU, mainly from poultry meat consumption. C. jejuni is the main species involved in the human disease. However, little is known about the role of swine meat in its epidemiology. Thus, the aim of this study was to assess the epidemiology and antimicrobial resistance of C. jejuni on swine processing at the slaughterhouse. To this end, a total of 21 pig herds were intensively sampled at the slaughterhouse. Campylobacter isolation was based on official method ISO 10272-1:2018, speciation was determined by the hippurate hydrolysis test, and antibiotic susceptibility was performed according to standard disc diffusion assay. The results showed that all batches shed Campylobacter in faeces upon arrival at the slaughterhouse and remained positive at the end of the slaughtering process (42.8%). Moreover, 41.5% of Campylobacter strains isolated were C. jejuni and all of them were resistant to at least one antibiotic, and 96.3% were multidrug-resistant strains. In conclusion, the high level of multidrug-resistant C. jejuni swine batch contamination at the slaughterhouse makes it necessary to include the swine sector in national control programmes to reduce the bacterium and its resistance.
- Genotyping and molecular characterization of antimicrobial resistance in thermophilic "Campylobacter" isolated from poultry breeders and their progeny in Eastern Spain
2020-10-01 Thermophilic Campylobacter spp. are recognized as a major cause of acute bacterial diarrhea in humans, with broiler meat being the most common source of human infection. Antibiotic therapy is usually necessary for severe or prolonged infections, especially in immunocompromised populations such as young or elderly individuals. However, different studies have demonstrated a close association between antibiotic use in animal production and antimicrobial resistance (AMR) in humans. In this sense, there is social pressure to reduce antibiotic administration and find adequate alternatives to control the presence of bacterial infections in farms. However, there is a lack of information related to Campylobacter AMR dynamics through the entire production system from breeders to their progeny. It is unknown if resistance genes are a result of adaptation through chromosomal mutation or through horizontal gene transfer, instead of vertical transmission of DNA from the parent to their progeny. Thus, the main objectives of this study were to assess the main AMR rates present in a poultry production system, to study the relationship between Campylobacter AMR profiles from breeders and their progeny, and to study the presence and distribution of antibiotic resistance genes in poultry production. Regarding AMR rates, ciprofloxacin was classified as extremely high, followed by nalidixic acid and tetracyclines that were classified as very high. Moreover, this study demonstrated a relationship between theAMR patterns and genes found from Campylobacter strains isolated in breeders and those present in their progeny.
- The dynamic of antibiotic resistance in commensal "Escherichia coli" throughout the growing period in broiler chickens : fast-growing vs. slow-growing breeds
2020-03-01 Antimicrobial resistance (AMR) is an important threat to public health worldwide. Furthermore, different studies have demonstrated a close association between antibiotic use in animal production and AMR in humans. It is well known that it is necessary to reduce antibiotic administration in farms by finding effective alternative treatments, using more resistant breeds and improving animal welfare.However, to be able to assess the alternatives proposed, it is essential to study the epidemiology ofAMRunder production conditions.Hence, the aim of this study was to investigate the AMR dynamic in 2 genetic poultry breeds during the growing period. The study was performed in 2 experimental poultry houses to simulate real production conditions, and no antibiotics were administered during the growing period. In addition, 2 poultry breeds were used, fast-growing and slow-growing. To evaluate AMR evolution, Escherichia coli was selected as indicator bacterium. To this end, animals from each experimental groupwere sampled at different times: on day of arrival, at mid-period, and at slaughter day. In the laboratory, cecal content was removed and inoculated in selective media. Then, biochemical tests were performed to confirm E. coli. Finally, antibiotic susceptibility was assessed according toDecision 2013/653.At the onset of the cycle, significant differences were observed between breeds, as the E. coli strains isolated from fast-growing 1-day-oldchicks showed higherAMRrates.However, at the end of the period, no significant differences were found between breeds and their presence of resistant bacteria (above 95%). Therefore, although no antibiotics were administered during the growing period, a high level ofAMRat slaughter day was demonstrated. Further studies are necessary to determine the main risk factors that increase the level of AMR throughout the productive cycle in broiler chickens. In conclusion, it is important to highlight that although it is crucial to control both antibiotic use and animal welfare during the growing period, measures should be taken at all levels of the production chain.