2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    UCH
    Can the presence of ovarian corpus luteum modify the hormonal composition of follicular fluid in mares?2020-04-09

    The hypothesis of this study was to investigate if the presence of corpus luteum (CL) in one ovary could modify the hormonal content of follicular fluid (FF) in the follicles. Sixty ovaries were taken after the slaughter of 30 clinically healthy mares. In relation to the sizes, the follicles were classified into three di erent categories, as small (20–30 mm), medium (31–40 mm) and large ( 41 mm). Blood samples were collected from the jugular vein of mares before their slaughter, and then the FF samplings were extracted from each single follicle. The ovaries that were collected were classified into two groups, according to the presence (CL-bearing) or absence (non-CL-bearing) of CL. The serum and FF samples were analysed for progesterone (P4), oestradiol-17 (E2), testosterone (T), androstenedione (A4) and dehydroepiandrosterone (DHEA). Intrafollicular P4 concentrations in large follicles of CL-bearing groups were lower than for non-CL-bearing ones. Intrafollicular E2 concentrations increased with the increase of the follicle diameter in both groups, CL-bearing and non-CL-bearing. However, in the FF with a large and medium follicle size, E2 concentrations were significantly higher in non-CL-bearing groups than in CL-bearing groups. T and A4 significantly increased in the large and medium follicle sizes when compared to the small follicle sizes in both groups, but higher concentrations in the non-CL-bearing group were obtained. Intrafollicular DHEA significantly decreased with the increase of the follicular diameter in both groups. Steroid hormones in FF dynamically changed, according to the presence or not of CL in the ovary. This study brings new knowledge on the role of the CL in the follicular hormonal composition in mares.

  • Thumbnail Image
    Publication
    UCH
    Intrafollicular and systemic dopamine, noradrenaline and adrenaline concentrations in cycling mares2020-10-16

    In some species, catecholamines in follicular fluid (FF) are related to local physiological events responsible for the regulation of ovarian functions and oocyte maturation. The aim of the present study was to determine and compare intrafollicular and systemic concentrations of dopamine (DA), noradrenaline (NA) and adrenaline (AD) in cycling mares. Sixty ovaries were collected during breeding season from 30 mares raised for slaughterhouse meat production, with clinically normal reproductive tracts, were evaluated. Blood samples were collected prior to slaughter. Follicles were classified into three categories in relation to size: small (20–30 mm; n = 20), medium ( 31–40 mm; n = 20) and large ( 41 mm; n = 20). Follicular fluid (FF) samples were extracted from each follicle. Intrafollicular DA, NA and AD concentrations were significantly higher than the systemic concentrations (p < 0.05). Intrafollicular DA concentrations were higher in medium than small and large follicles (p < 0.05). Intrafollicular NA concentrations were higher in small than medium and large follicles (p < 0.05). Intrafollicular AD concentrations were higher in large than small and medium follicles (p < 0.05). Follicle diameter was significantly and negatively correlated with NA and AD (p < 0.05). A significant correlation of the same hormone concentration in FF and in systemic fluid was observed (p < 0.05). In summary, the FF can serve as an intraovarian catecholamine-storing compartment, with the ability to release neurotransmitters in a regulated way. These results provide novel insights into the neuronal nature of the follicle, suggesting the involvement of catecholamines in normal ovarian functions in mares.

  • Thumbnail Image
    Publication
    UCH
    Physiology and metabolic anomalies of dopamine in horses : a review2018-01-01

    Dopamine (DA) is an important endogenous catecholamine that exerts generalized effects on both neuronal (as a neurotransmitter) and non-neuronal tissues (as an autocrine or paracrine agent). In the central nervous system (CNS), DA binds to specific membrane receptors present in neurons and plays a key role in the control of motor activity, learning, cognition, affectivity and attention. Horses can also present with hyper- and hypodopaminergic conditions, including stereotypic behaviors and pituitary pars intermedia dysfunction and Parkinsonian’s syndrome, respectively. DA biosynthesis also occurs in peripheral tissues, and receptors in various organs such as the kidney, pancreas, lungs and blood vessels outside the CNS have been detected. DA emulates the actions related to the sympathetic nervous system (SNS), promoting the increase in heart rate, blood pressure, electrolyte balance and gastrointestinal (GI) motility. In fact, GI alterations in dopaminergic transmission have been directly or indirectly related to hypomotility and/or postoperative ileus (POI). On the other hand, there are physiological factors, such as breed, age, exercise and reproductive status that modify DA concentrations. In reproduction, the administration of DA antagonists in the middle/end of the spring and anestrus transition period advances the first ovulation of the year in mares. This chapter offers a brief description of the importance of DA as a neurotransmitter and peripheral hormone. Special attention is paid to: (1) functional alterations that occur in the brain and GI tract in various diseases and (2) current therapy to correct alterations in DA systems.