2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 10 of 19
  • Thumbnail Image
    Publication
    UCH
    Changes of acute-phase proteins, glucose, and lipid metabolism during pregnancy in lactating dairy cows2022-09-19

    The study aimed to evaluate the effects of different stages of lactation (0 to >300 d) and pregnancy (0 to >180 d) on serum amyloid A (SAA), C-reactive protein (CRP), glucose, total cholesterol (TCho), and triglyceride (TG) concentrations in dairy cows of different breeds. Thus, 40 healthy multiparous cows (10 Holstein, 10 Simmental, 10 Brown, and 10 Modicana) were randomly selected, and blood samples were collected once every 60 d for 1 year. Overall, SAA and CRP serum concentrations progressively increased and became more variable along the lactation, peaking at >240–300 d, and then decreased in the last period (>300 d). Along pregnancy, SAA and CRP initially increased, with the highest concentrations at >60–120 d, and then decreased until the last phase of pregnancy (>180 d). However, lactation and gestation phases did not significantly affect SAA and CRP when all the cows were analyzed together. A significant and positive correlation was observed between SAA and CRP both along lactation (r D 0:89; p<0:0001) and pregnancy (r D 0:91; p<0:0001). Breeds only showed differences in CRP levels along gestation (p D 0:0102), due to a peak registered at 0–60 d in Holstein cows. In pregnant cows, glucose was positively correlated with SAA (r D 0:43; p D 0:0017) and CRP (r D 0:42; p D 0:0019). Hence, these significant and positive relationships reflect the physiological adaptations of the dairy cows along both gestational and lactational dynamics, suggesting that these proteins may also be involved in non-pathological processes. In this perspective, this study established that the obtained response markedly varies among healthy individuals along lactation and gestation and thus that the physiological range of acute-phase proteins (APPs) is wide; this makes it difficult to use these proteins as a marker of different physiological reproductive and productive periods.

  • Thumbnail Image
    Publication
    UCH
    Activation of the renin-angiotensin-aldosterone system in mares around ovulation2017-06-30

    Many physiological events occurring during the estrous cycle, including folliculogenesis, oocyte maturation, ovulation, follicular atresia, corpus luteum development, luteolysis, steroidogenesis, and angiogenesis are associated with an increased expression of the renin–angiotensin–aldosterone system (RAAS) in uterus and ovarian follicles. This enhanced expression leads to a rise in plasma concentrations of these hormones in women and laboratory animals, and the same might happen in the mare. This study aims to assess if an activation of the RAAS occurs in mares around ovulation and if this activation is related to the diameter of the predominant follicle (DPF), packed cell volume (PCV), and electrolyte concentrations. Twenty-five healthy Spanish Purebred mares were sampled during the five days before ovulation, the day of ovulation, and the first five days after ovulation. Renin (REN) concentrations increased progressively during the five days before ovulation, achieving the highest values on the day of ovulation. Angiotensin (ANG) concentrations showed a sharp decrease after ovulation, with the lowest values the fifth day after it. Aldosterone (ALD) concentrations increased progressively, from the fifth day before ovulation until the fifth day after ovulation. The highest PCV values were found on the day of ovulation. There were no relevant correlations between the RAAS components and electrolytes concentrations. Before ovulation, there was a positive relationship between REN and ALD (r = 0.760) and after ovulation, a negative correlation between ANG and ALD (r = –0.660). The DPF was correlated with REN (r = 0.740) and with ALD (r = 0.800) concentrations. Ovulation in the mare is associated with high plasma REN concentrations, and therefore, with an activation of the RAAS. In addition, after ovulation, the sharp decrease in plasma REN and ANG concentrations might be a reflex of the modulation of the previously activated RAAS, although plasma ALD concentrations increased during this period.

  • Thumbnail Image
    Publication
    UCH
    Changes in hematological and biochemical profiles in ovariohysterectomized bitches using an Alfaxalone-Midazolam-Morphine-Sevoflurane protocol2022-04-02

    The aim of this study was to monitor hematochemical changes during and after OHE in bitches. Twenty-four females were anesthetized with alfaxalone, midazolam, morphine and sevoflurane. Blood samples were taken before anesthesia (T0), at 30 (T1), and 60 min (T2), at 3 (T3), 6 (T4), 12 (T5), and 24 h (T6), and at 3 (T7) and 7 days (T8) from the start of surgery. Red blood cells (RBC) and packed cell volume (PCV) decreased significantly from T1 to T5 and hemoglobin (HB) concentration from T4 to T6. Both the white blood cell (WBC) and neutrophil (NFS) count increased significantly from T3 to T6, monocyte (MON) from T2 to T5, and eosinophil (EOS) at T5. Platelet (PLT) and plateletcrit (PCT) significantly decreased at T5 and increased from T6 to T8; platelet distribution width (PDW) increased significantly from T3 to T6. Creatine kinase (CK) activity increased significantly from T5 to T7. Glucose (GLU) concentrations increased significantly at T2 and P from T2 to T3. TG levels decreased from T2 to T4 and blood urea nitrogen (BUN) levels from T1 to T7, subsequently increasing until T8. Changes possibly resulting from stress and surgical trauma, as well as hemodilution and splenic storage, are due to anesthesia and surgery. In healthy bitches, these changes tend to gradually stabilize after the ending of OHE. A post-operative follow-up is essential to detect possible post-operative complications.

  • Thumbnail Image
    Publication
    UCH
    Hepatic enzyme profile in horses2022-03-29

    For diagnostic purposes, liver enzymes are usually classified into hepatocellular and cholestatic. These two groups of equine liver-specific enzymes include sorbitol dehydrogenase (SDH), glutamate dehydrogenase (GLDH), -glutamyl transferase (GGT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP). SDH and GLDH mostly reflect hepatocellular injury and cholestasis, while GGT expresses high values in biliary necrosis or hyperplasia. Likewise, AST, LDH, and ALP also reflect hepatocellular and biliary disease, but these enzymes are not liver specific. From the clinical point of view of the course of liver or biliary disease, AST and ALP are indicative of chronic disease, whereas SDH, GGT, and GLDH indicate an acute course. The patterns of enzymatic changes at the blood level are associated with different types of liver pathologies (infectious, inflammatory, metabolic, toxic, etc.). Increases in hepatocellular versus biliary enzyme activities are indicative of a particular process. There are different ways to diagnose alterations at the hepatic level. These include the evaluation of abnormalities in the predominant pattern of hepatocellular versus cholestatic enzyme abnormalities, the mild, moderate, or marked (5–10-fold or >10-fold) increase in enzyme abnormality concerning the upper limit of the reference range, the evolution over time (increase or decrease) and the course of the abnormality (acute or chronic).

  • Thumbnail Image
    Publication
    UCH
    Intramuscular fat selection in rabbits modifies the fatty acid composition of muscle and liver tissues2022-03-31

    This study was conducted on two rabbit lines divergently selected for intramuscular fat (IMF) content in the Longissimus thoracis et lumborum (LTL) muscle. The aim was to estimate the direct response to selection for IMF after 10 generations, and the correlated responses in carcass quality traits, meat fatty acid content, liver fat and its fatty acid content, and in plasma metabolic markers related to liver metabolism. Selection for IMF content was successful, showing a direct response equivalent to 3.8 SD of the trait after 10 generations. The high-IMF line (H) showed a greater dissectible fat percentage than the low-IMF line (L), with a relevant difference (DH-L = 0.63%, Pr = 1). No difference was found in liver fat content (DH-L = 􀀀0.04, P0 = 0.62). The fatty acid content of both LTL muscle and liver was modified after selection. The LTL muscle had greater saturated (SFA; DH-L = 5.05, Pr = 1) and monounsaturated fatty acids (MUFA; DH-L = 5.04, Pr = 1) contents in the H line than in the L line. No relevant difference was found in polyunsaturated fatty acids content (PUFA; Pr = 0.05); however, greater amounts of C18:2n6 (DH-L = 3.03, Pr = 1) and C18:3n3 (DH-L = 0.56, Pr = 1) were found in the H than in the L line. The liver presented greater MUFA (DH-L = 1.46) and lower PUFA (DH-L = 􀀀1.46) contents in the H than in the L line, but the difference was only relevant for MUFA (Pr = 0.86). The odd-chain saturated fatty acids C15:0 and C17:0 were more abundant in the liver of the L line than in the liver of the H line (DH-L = 􀀀0.04, Pr = 0.98 for C15:0; DH-L = 􀀀0.09, Pr = 0.92 for C17:0). Greater concentrations of plasma triglycerides (DH-L = 􀀀34) and cholesterol (DH-L = 􀀀3.85) were found in the L than in the H line, together with greater plasma concentration of bile acids (DH-L = 􀀀2.13). Nonetheless, the difference was only relevant for triglycerides (Pr = 0.98).

  • Thumbnail Image
    Publication
    UCH
    Interrelationship between reproductive hormones and acute phase proteins during estrous cycle and pregnancy in Spanish purebred broodmares2021-12-01

    In some species, female steroid hormones modify the profile of acute phase proteins (APPs) during the estrous cycle and pregnancy, according to the ovulation, embryonic implantation and placental development; however, nowadays there’s no experimental evidence for equine species. Objectives of this study were: to compare the serum amyloid A (SAA), haptoglobin (Hp) and C-reactive protein (CRP) concentrations between cyclic and pregnant mares, and to analyze the influence of estradiol-17β (E2) during estrous cycle or estrone sulfate (E1) during pregnancy, and progesterone (P4) on these proteins to assess their potential role to identify the cyclicity or pregnancy in Spanish mares. Blood samples were taken from 20 Purebred Spanish mares on the day of ovulation (day 0), on days +5 and +16 post-ovulation, and then, monthly during the whole pregnancy. SAA, Hp and CRP did not change between day 0, +5 and +16 post-ovulation days. P4 concentrations were significantly higher on day +16 than on days +5 and 0; and E2 concentrations were significantly higher on day 0 than day +5. On the other hand, pregnancy was characterized by a progressive increase in the Hp, variable modifications of E1 and P4 concentrations, without changes in SAA and CRP. The absence of significant differences in the APPs between days 0, +5 and +16, suggested that these proteins cannot be used as biomarkers of diagnosis of heat or preg- nancy in Spanish mares, at least early, since the Hp later increases during the gestation. Nevertheless, it is possible to use them for comparative purposes with other equine breeds, as supervisor instrument of health status in breeding females as diagnostic tools to monitor pregnancy’s development and/or subclinical reproductive inflammations, that could lead to the early embryonic death.

  • Thumbnail Image
    Publication
    UCH
    Endocrine and electrolyte balances during periovulatory period in cycling mares2021-02-17

    In cycling females, the periovulatory period is characterized by stimulation of the hypothalamic pituitary adrenal (HPA) axis. The aim of present study was to analyze the pattern and interrelationships among adrenocorticotropic hormone (ACTH), cortisol (CORT), aldosterone (ALD) and electrolytes (sodium—Na+, potassium—K+ and chloride—Cl􀀀) during periovulatory period in cycling mares. Venous blood samples were obtained daily from a total of 23 Purebred Spanish broodmares, aged 7.09 2.5 years, from day 􀀀5 to day +5 of estrous cycle, considering day 0, the day of ovulation. Plasma ACTH was measured by a fluorescent immunoassay kit, serum CORT and ALD by means of a competitive ELISA immunoassay, and plasma Na+, K+ and Cl􀀀 were quantified by an analyzer with selective electrodes for the three ions. ACTH showed higher concentrations at day 0 compared to days 􀀀5 to 􀀀1 and +1 to +3 (p < 0.05). CORT showed higher concentrations at day 0 compared to days 􀀀5 to 􀀀2 and +1 to +5 (p < 0.05). ALD showed higher concentrations at day 0 compared to days 􀀀5 to 􀀀2 (p < 0.05) and +2 (p < 0.05). Na+ and Cl􀀀 showed higher concentrations at day 0, compared to day 􀀀5 and +5. K+ showed lower concentrations at day 0 compared to day +1 (p < 0.05). The significant correlations obtained between ACTH and CORT (r = 0.20) and between ACTH and ALD (r = 0.32) suggest that although ACTH may have an effect both on CORT and ALD, there are other very important determinants that could be considered. Hence, it is possible to presume that the pituitary adrenocortical response and ALD may be involved in the ovulatory mechanisms without a direct relation with electrolyte pattern.

  • Thumbnail Image
    Publication
    UCH
    Physiological and clinical endocrinology aspects of estrous cycle and pregnancy in mares2021-01-20

    The use of advanced reproductive endocrinology can generate important economic benefits for equine breeding farms. Pregnancy in the mare involves considerable endocrine changes, which can be explained in part by the development of different structures such as embryonic vesicles, primary and secondary CL, endometrial cups and development of fetoplacental units. Both the pregnant mare and the fetus adapt to this development with unique mechanisms, such as alterations in the maternal endocrine metabolism and hormonal feedback. Since the ability to produce a viable foal is critical for the broodmare, the maintenance of the gestation implies almost a year of physiological effort. Therefore, the joint knowledge of basic reproductive science and current clinical endocrinology allows veterinarians and breeders to be better positioned to achieve their objectives. This chapter reviews normal and abnormal endocrine patterns during the equine estrual cycle, pregnancy. We also consider hormonal evaluation related to placentitis, abortions, recurrent pregnancy loss, and premature deliveries. Also, several aspects associated with endocrinological control of the reproductive cycle, ovulation, parturition, high-risk mare, and hormone supplementation will be developed.