2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- Genome hypermobility by lateral transduction
2018-10-12 Genetic transduction is a major evolutionary force that underlies bacterial adaptation.Here we report that the temperate bacteriophages ofStaphylococcusaureusengage in adistinct form of transduction we term lateral transduction. Staphylococcal prophagesdo not follow the previously described excision-replication-packaging pathway but insteadexcise late in their lytic program. Here, DNA packaging initiates in situ from integratedprophages, and large metameric spans including several hundred kilobases of theS.aureusgenome are packaged in phage heads at very high frequency. In situ replication beforeDNA packaging creates multiple prophage genomes so that lateral-transducing particles formduring normal phage maturation, transforming parts of theS.aureuschromosome intohypermobile regions of gene transfer.
- Antagonistic interactions between phage and host factors control arbitrium lysis–lysogeny decision
2024-01-04 Phages can use a small-molecule communication arbitrium system to coordinate lysis–lysogeny decisions, but the underlying mechanism remains unknown. Here we determined that the arbitrium system in Bacillus subtilis phage phi3T modulates the bacterial toxin–antitoxin system MazE–MazF to regulate the phage life cycle. We show that phi3T expresses AimX and YosL, which bind to and inactivate MazF. AimX also inhibits the function of phi3T_93, a protein that promotes lysogeny by binding to MazE and releasing MazF. Overall, these mutually exclusive interactions promote the lytic cycle of the phage. After several rounds of infection, the phage-encoded AimP peptide accumulates intracellularly and inactivates the phage antiterminator AimR, a process that eliminates aimX expression from the aimP promoter. Therefore, when AimP increases, MazF activity promotes reversion back to lysogeny, since AimX is absent. Altogether, our study reveals the evolutionary strategy used by arbitrium to control lysis–lysogeny by domesticating and fine-tuning a phage-defence mechanism.