2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    UCH
    Real-time path planning based on harmonic functions under a Proper Generalized Decomposition-Based framework2021-06-08

    This paper presents a real-time global path planning method for mobile robots using harmonic functions, such as the Poisson equation, based on the Proper Generalized Decomposition (PGD) of these functions. The main property of the proposed technique is that the computational cost is negligible in real-time, even if the robot is disturbed or the goal is changed. The main idea of the method is the off-line generation, for a given environment, of the whole set of paths from any start and goal configurations of a mobile robot, namely the computational vademecum, derived from a harmonic potential field in order to use it on-line for decision-making purposes. Up until now, the resolution of the Laplace or Poisson equations has been based on traditional numerical techniques unfeasible for real-time calculation. This drawback has prevented the extensive use of harmonic functions in autonomous navigation, despite their powerful properties. The numerical technique that reverses this situation is the Proper Generalized Decomposition. To demonstrate and validate the properties of the PGD-vademecum in a potential-guided path planning framework, both real and simulated implementations have been developed. Simulated scenarios, such as an L-Shaped corridor and a benchmark bug trap, are used, and a real navigation of a LEGO®MINDSTORMS robot running in static environments with variable start and goal configurations is shown. This device has been selected due to its computational and memory-restricted capabilities, and it is a good example of how its properties could help the development of social robots.

  • Thumbnail Image
    Publication
    UCH
    Towards a vector field based approach to the Proper Generalized Decomposition (PGD)2021-01-01

    A novel algorithm called the Proper Generalized Decomposition (PGD) is widely used by the engineering community to compute the solution of high dimensional problems. However, it is well-known that the bottleneck of its practical implementation focuses on the computation of the so-called best rank-one approximation. Motivated by this fact, we are going to discuss some of the geometrical aspects of the best rank-one approximation procedure. More precisely, our main result is to construct explicitly a vector field over a low-dimensional vector space and to prove that we can identify its stationary points with the critical points of the best rank-one optimization problem. To obtain this result, we endow the set of tensors with fixed rank-one with an explicit geometric structure.

  • Thumbnail Image
    Publication
    UCH
    A path planning algorithm for a dynamic environment based on proper generalized decomposition2020-12-19

    A necessity in the design of a path planning algorithm is to account for the environment. If the movement of the mobile robot is through a dynamic environment, the algorithm needs to include the main constraint: real-time collision avoidance. This kind of problem has been studied by different researchers suggesting different techniques to solve the problem of how to design a trajectory of a mobile robot avoiding collisions with dynamic obstacles. One of these algorithms is the artificial potential field (APF), proposed by O. Khatib in 1986, where a set of an artificial potential field is generated to attract the mobile robot to the goal and to repel the obstacles. This is one of the best options to obtain the trajectory of a mobile robot in real-time (RT). However, the main disadvantage is the presence of deadlocks. The mobile robot can be trapped in one of the local minima. In 1988, J.F. Canny suggested an alternative solution using harmonic functions satisfying the Laplace partial differential equation. When this article appeared, it was nearly impossible to apply this algorithm to RT applications. Years later a novel technique called proper generalized decomposition (PGD) appeared to solve partial differential equations, including parameters, the main appeal being that the solution is obtained once in life, including all the possible parameters. Our previous work, published in 2018, was the first approach to study the possibility of applying the PGD to designing a path planning alternative to the algorithms that nowadays exist. The target of this work is to improve our first approach while including dynamic obstacles as extra parameters.

  • Thumbnail Image
    Publication
    UCH
    PGD Variational vademecum for robot motion planning : a dynamic obstacle case2018-04-27

    A fundamental robotics task is to plan collision-free motions for complex bodies from a start to a goal position among a set of static and dynamic obstacles. This problem is well known in the literature as motion planning (or the piano mover's problem). The complexity of the problem has motivated many works in the field of robot path planning. One of the most popular algorithms is the Artificial Potential Field technique (APF). This method defines an artificial potential field in the configuration space (C-space) that produces a robot path from a start to a goal position. This technique is very fast for RT applications. However, the robot could be trapped in a deadlock (local minima of the potential function). The solution of this problem lies in the use of harmonic functions in the generation of the potential field, which satisfy the Laplace equation. Unfortunately, this technique requires a numerical simulation in a discrete mesh, making useless for RT applications. In our previous work, it was presented for the first time, the Proper Generalized Decomposition method to solve the motion planning problem. In that work, the PGD was designed just for static obstacles and computed as a vademecum for all Start and Goal combinations. This work demonstrates that the PGD could be a solution for the motion planning problem. However, in a realistic scenario, it is necessary to take into account more parameters like for instance, dynamic obstacles. The goal of the present paper is to introduce a diffusion term into the Laplace equation in order to take into account dynamic obstacles as an extra parameter. Both cases, isotropic and non-isotropic cases are into account in order to generalize the solution.