2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    UCH
    Rapid Oxford Nanopore Technologies MinION sequencing workflow for "Campylobacter jejuni" identification in broilers on site : a proof-of-concept study2022-08-13

    Campylobacter is recognised as one of the most important foodborne bacteria, with a worldwide health and socioeconomic impact. This bacterium is one of the most important zoonotic players in poultry, where efficient and fast detection methods are required. Current official culture methods for Campylobacter enumeration in poultry usually include >44 h of culture and >72 h for identification, thus requiring at least five working shifts (ISO/TS 10272-2:2017). Here, we have assembled a portable sequencing kit composed of the Bento Lab and the MinION and developed a workflow for on-site farm use that is able to detect and report the presence of Campylobacter from caecal samples in less than five hours from sampling time, as well as the relationship of Campylobacter with other caecal microbes. Beyond that, our workflow may offer a cost-effective and practical method of microbiologically monitoring poultry at the farm. These results would demonstrate the possibility of carrying out rapid on-site screening to monitor the health status of the poultry farm/flock during the production chain.

  • Thumbnail Image
    Publication
    UCH
    Experimental evidence reveals both cross-infection and cross-contamination risk of embryo storage in liquid nitrogen biobanks2020-04-01

    In recent decades, gamete and embryo cryopreservation have become routine procedures in livestock and human assisted reproduction. However, the safe storage of germplasm and the prevention of disease transmission continue to be potential hazards of disease transmission through embryo transfer. This study aimed to demonstrate the potential risk of cross-infection of embryos from contaminated liquid nitrogen, and cross-contamination of sterile liquid nitrogen from infected embryos in naked and closed devices. Additionally, we examined the e ects of antibiotic-free media on culture development of infected embryos. The study was a laboratory-based analysis using rabbit as a model. Two experiments were performed to evaluate both cross-infection (liquid nitrogen to embryos) and cross-contamination (embryos to liquid nitrogen) of artificially inoculated Salmonella Typhimurium, Staphylococcus aureus, Enterobacter aerogenes, and Aspergillus brasiliensis. Rapid cooling through vitrification was conducted on rabbit embryos, stored for a year, thawed, and cultured. In vivo produced late morulae–early blastocyst stages (72 h) embryos were used (n = 480). Embryos were cultured for 1 h in solutions with and without pathogens. Then, the embryos were vitrified and stored in naked and closed devices for one year in two liquid nitrogen biobanks (one pathogen-free and the other artificially contaminated). Embryos were warmed and cultured for a further 48 h, assessing the development and the presence of microorganism (chromogenic media, scanning electron microscopy). Embryos stored in naked devices in artificially contaminated liquid nitrogen became infected (12.5%), while none of the embryos stored in closed devices were infected. Meanwhile, storage of artificially infected embryos incurred liquid nitrogen biobank contamination (100%). Observations by scanning electron microscopy revealed that all the microorganisms were caught in the surface of embryos after the vitrification-thawed procedure. Nevertheless, embryos cultured in antibiotics and antimycotic medium developed to the hatched blastocyst stage, while artificially infected embryos cultured in antibiotic-free medium failed to develop. In conclusion, our findings support that both cross-contamination and cross-infection during embryo storage in liquid nitrogen biobanks are plausible. So, to ensure biosafety for the cryogenic storage, closed systems that avoid direct contact with liquid nitrogen must be used. Moreover, it seems essential to provide best practice guidelines for the cryogenic preservation and storage of gametes and embryos, to define appropriate quality and risk management procedures.