2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- Supplementary feeding stations for conservation of vultures could be an important source of monophasic "Salmonella typhimurium" 1,4,[5],12:i:-
2018-09-15 Vultures are nature's most successful scavengers, feeding on the carcasses of dead animals present in the field. Availability of domestic carrion has been unstable due to rapidly changing agro-grazing economies and increasing sanitary regulations that may require burial or burning of livestock carcasses. Thus, several griffon vulture (Gyps fulvus) recoveries are based on European legislation that guarantees the animals' welfare, avoids intense persecution of the vultures and allows the feeding of threatened wildlife in supplementary feeding stations (SFS). However, in recent years, many studies have speculated on the likelihood that avian scavengers may be infected by feeding on pig carcasses at SFS from intensive livestock. In this context, the present study evaluated whether free-living griffon vultures and pig farms share zoonotic Salmonella strains to test the hypothesis that vulture are infected during consumption of carcasses provided at SFS. Here, the occurrence, serotypes and genomic DNA fingerprinting (phage typing and pulsed-field gel electrophoresis) of isolated strains were carried out in griffon vultures and pig farms authorised to provided carcasses at SFS in Castellón province (eastern Spain). The bacteriological analyses revealed that 21.1% of vultures and 14.5% for pig farms samples tested were Salmonella-positive. Monophasic S. typhimurium 1,4,[5],12:i:- was the most frequently isolated serovar. Comparison of Salmonella strains isolated from vultures and pig farms revealed that monophasic S. typhimurium 1,4,[5],12:i:-, S. Derby and S. Rissen strains were highly genetically homogeneous (similar DNA fingerprint). In conclusion, the current study indicates that free-living griffon vultures and pig farms that provide the carcasses at SFS share several zoonotic Salmonella strains. On this basis, and although transmission could be bidirectional, our result seems to corroborate the pig carcasses-to-vulture transmission and cross-infection at SFS. As an immediate Salmonella control strategy in wild avian scavengers, we suggest the implementation of a programme to guarantee that solely pig carcasses from Salmonella-free farms arrive at SFS.
- Examining the effects of "Salmonella" phage on the caecal microbiota and metabolome features in "Salmonella"-free broilers
2022-11-10 Bacteriophages selectively infect and kill their target bacterial host, being a promising approach to controlling zoonotic bacteria in poultry production. To ensure confidence in its use, fundamental questions of safety and toxicity monitoring of phage therapy should be raised. Due to its high specificity, a minimal impact on the gut ecology is expected; however, more in-depth research into key parameters that influence the success of phage interventions has been needed to reach a consensus on the impact of bacteriophage therapy in the gut. In this context, this study aimed to investigate the interaction of phages with animals; more specifically, we compared the caecum microbiome and metabolome after a Salmonella phage challenge in Salmonella-free broilers, evaluating the role of the phage administration route. To this end, we employed 45 caecum content samples from a previous study where Salmonella phages were administered via drinking water or feed for 24 h from 4, 5 to 6-weeks-old broilers. High-throughput 16S rRNA gene sequencing showed a high level of similarity (beta diversity) but revealed a significant change in alpha diversity between broilers with Salmonella-phage administered in the drinking water and control. Our results showed that the phages affected only a few genera of the microbiota’s structure, regardless of the administration route. Among these, we found a significant increase in Streptococcus and Sellimonas in the drinking water and Lactobacillus, Anaeroplasma and Clostridia_vadinBB60_group in the feed. Nevertheless, the LC-HRMS-based metabolomics analyses revealed that despite few genera were significantly affected, a substantial number of metabolites, especially in the phage administered in the drinking water were significantly altered (64 and 14 in the drinking water and feed groups, respectively). Overall, our study shows that preventive therapy with bacteriophages minimally alters the caecal microbiota but significantly impacts their metabolites, regardless of the route of administration.
- Rapid Oxford Nanopore Technologies MinION sequencing workflow for "Campylobacter jejuni" identification in broilers on site : a proof-of-concept study
2022-08-13 Campylobacter is recognised as one of the most important foodborne bacteria, with a worldwide health and socioeconomic impact. This bacterium is one of the most important zoonotic players in poultry, where efficient and fast detection methods are required. Current official culture methods for Campylobacter enumeration in poultry usually include >44 h of culture and >72 h for identification, thus requiring at least five working shifts (ISO/TS 10272-2:2017). Here, we have assembled a portable sequencing kit composed of the Bento Lab and the MinION and developed a workflow for on-site farm use that is able to detect and report the presence of Campylobacter from caecal samples in less than five hours from sampling time, as well as the relationship of Campylobacter with other caecal microbes. Beyond that, our workflow may offer a cost-effective and practical method of microbiologically monitoring poultry at the farm. These results would demonstrate the possibility of carrying out rapid on-site screening to monitor the health status of the poultry farm/flock during the production chain.
- Comparative study of semen parameters and hormone profile in Small-Spotted Catshark (Scyliorhinus canicula) : aquarium-housed vs. wild-captured
2021-10-03 Several chondrichthyan species are threatened, and we must increase our knowledge of their reproductive biology in order to establish assisted reproductive protocols for ex situ or in situ endangered species. The small-spotted catshark (Scyliorhinus canicula) is one of the most abundant shark species of the Mediterranean coast and is easy to maintain in aquaria; therefore, it is considered an ideal reproductive model. This study aimed to compare S. canicula male reproductive function in aquarium-housed (n = 7) and wild-captured animals, recently dead (n = 17). Aquarium-housed animals had lower semen volume (p = 0.005) and total sperm number (p = 0.006) than wild-captured animals, but similar sperm concentrations. In terms of sperm parameters, aquarium-housed sharks showed higher total sperm motility (p = 0.004), but no differences were observed regarding sperm viability, mitochondrial membrane potential, or membrane integrity. A morphometric study pointed to a significantly longer head (p = 0.005) and acrosome (p = 0.001) in wild-captured animals. The results of the spermatozoa morphological study of S. canicula were consistent with previous results obtained in other chondrichthyan species. With regard to sex hormones, testosterone levels were significantly lower in aquarium-housed animals (p 0.001), while similar levels of 17 -estradiol and progesterone were found. In short, the present study provides evidence of good in vitro semen quality in S. canicula housed in an aquarium, underlining their excellent potential for application in reproductive technologies for this and other chondrichthyan species.
- Contamination of pig carcass with "Salmonella enterica" serovar "Typhimurium monophasic" variant 1,4[5],12:i:- originates mainly in live animals
2020-02-10 Pork is considered a major source of Salmonella Typhimurium infection in humans in the EU, including monophasic strains. Widespread distribution of virulent serotypes such as monophasic variants of S. Typhimurium have emerged as a public health threat. Despite the current situation, within the EU there is no mandatory programme for the control of Salmonella at pork production level. In this context, the aims of this study were: to examine the presence of Salmonella in the swine production system from arrival at the slaughterhouse until the end of processing, and investigate the genetic relationship among the Salmonella serovars isolated. During the study, a total of 21 pig herds were intensively sampled during processing at the slaughterhouse. ERIC-PCR was performed among isolates recovered at the different steps in the slaughterhouse to assess the genetic relationship. Then, PFGE was done to study the pulsotypes among the different Salmonella serovars isolated. The results showed a high level of Salmonella pork batch contamination upon arrival at the slaughterhouse (71.4%) and at the end of the slaughtering process (66.7%), with mST the main serovar isolated from both origins (53.1% and 38.2%, respectively). The slaughter environment poses a potential risk for carcass contamination and it is considered an important source of Salmonella spp. Similarly, this study shows that 14.3% of the strains isolated from carcasses have the same Xbal-PFGE profile as those previously recovered in the slaughterhouse environment, but not in the live animals from that same batch. In conclusion, there is a high level of Salmonella swine batch contamination upon arrival at the slaughterhouse and at the end of the slaughtering process, mST being the most frequently isolated serovar. Moreover, a strong genetic relationship has been observed between Salmonella strains isolated from the batch on arrival at the slaughterhouse, the processing environment and pork carcass contamination. In this sense, it would be necessary to implement a control programme to reduce the bacterium from pork farms and raise the awareness of biosecurity measures.
- Roles of host genetics and sperm microbiota in reproductive success in healthy rabbit
2020-12-10 Although the effects of sperm microbiota and sperm quality have been described previously, recent studies provide evidence that female genital modifications triggered by seminal components could be of significant importance to identify some disturbances associated with fertility. So, sperm microbiota could play a key role in sperm quality, contributing to fertilisation. To understand how sperm microbiota diversity is influenced by the host genetics, the symbiotic bacteria in four inbred lines raised in the same animal facility and their effects on sperm quality and fertility were analysed. Forty healthy rabbits from four selected Spanish commercial lines were used in this research (three based on litter performance, designated A, V and LP, and one selected for daily body weight gain, called R). Significant variations in the seminal concentration, morphology and some motion parameters were found among inbred lines, but sperm motility and viability were similar among inbred lines. After mating, inbred lines selected for litter size had the same fertility rate, significantly higher than inbred line selected for body weight (82±3.3%, 79±3.5% and 89±4.5% versus 61±3.7%, for the A, V and LP vs R lines, respectively, p<0.05). Bacteria belonging to Proteobacteria, Firmicutes, Fusobacteria and Bacteroidetes were identified in sperm microbiota. At genus level, the bacterial community composition in the sperm microbiota was influenced by host genetics. A total of 35, 16, 34, and 51 genera were accurately detected in the A, V, LP, and R lines, respectively. Moreover, Enhydrobacter, Ferruginibacter, Myroides Paracoccus, Rheinheimera, Tepidiphilus, Tetradesmus obliquus and Thauera genera were present only in the inbred lines selected for litter size. Moreover, the discriminant analysis revealed Lysinibacillus and Flavobacterium genera as potential biomarkers for fertility. Thus, these two genera may play a key role in fertility. Our results demonstrated the 3 existence of a rabbit inbred line-specific variation in bacterial occurrence in sperm microbiota. Moreover, fertility differentials among inbred lines that were not predicted by routine semen analysis could be partly explained by the symbiotic state of the semen microbiota.
- Antibacterial activity of some molecules added to rabbit semen extender as alternative to antibiotics
2021-04-20 Although great attention is paid to hygiene during semen collection and processing, bacteria are commonly found in the semen of healthy fertile males of different species. As the storage of extended semen might facilitate bacterial growth, extenders are commonly supplemented with antibiotics. This study aimed to evaluate the antibacterial activity of ethylenediaminetetraacetic acid (EDTA), bestatin and chitosan-based nanoparticles added to rabbit semen extender and their effect on reproductive performance under field conditions. Four different extenders were tested, supplemented with antibiotics (TCG+AB), with EDTA and bestatin (EB), with EDTA, bestatin and chitosan-based nanoparticles (QEB) or without antibiotics (TCG-AB). Extended semen was cooled at 15 C for three days. Cooled samples were examined for bacterial growth and semen quality every 24 h for 3 days. The enterobacteria count increased considerably during storage at 72 h in semen extended with TCG+AB and TCG-AB, while extenders EB and QEB showed a bacteriostatic effect over time. After 24, 48 and 72 h, quality characteristics were retained in all groups, with no significantmotility differences, either in acrosome integrity, membrane functionality or the viability of spermatozoa. Additionally, bacterial concentration present in fresh semen did not affect reproductive performance. In conclusion, EDTA and bestatin exerted a potent bacteriostatic effect over time and could be used as an alternative to conventional antibiotics in rabbit semen extenders.
- Experimental evidence reveals both cross-infection and cross-contamination risk of embryo storage in liquid nitrogen biobanks
2020-04-01 In recent decades, gamete and embryo cryopreservation have become routine procedures in livestock and human assisted reproduction. However, the safe storage of germplasm and the prevention of disease transmission continue to be potential hazards of disease transmission through embryo transfer. This study aimed to demonstrate the potential risk of cross-infection of embryos from contaminated liquid nitrogen, and cross-contamination of sterile liquid nitrogen from infected embryos in naked and closed devices. Additionally, we examined the e ects of antibiotic-free media on culture development of infected embryos. The study was a laboratory-based analysis using rabbit as a model. Two experiments were performed to evaluate both cross-infection (liquid nitrogen to embryos) and cross-contamination (embryos to liquid nitrogen) of artificially inoculated Salmonella Typhimurium, Staphylococcus aureus, Enterobacter aerogenes, and Aspergillus brasiliensis. Rapid cooling through vitrification was conducted on rabbit embryos, stored for a year, thawed, and cultured. In vivo produced late morulae–early blastocyst stages (72 h) embryos were used (n = 480). Embryos were cultured for 1 h in solutions with and without pathogens. Then, the embryos were vitrified and stored in naked and closed devices for one year in two liquid nitrogen biobanks (one pathogen-free and the other artificially contaminated). Embryos were warmed and cultured for a further 48 h, assessing the development and the presence of microorganism (chromogenic media, scanning electron microscopy). Embryos stored in naked devices in artificially contaminated liquid nitrogen became infected (12.5%), while none of the embryos stored in closed devices were infected. Meanwhile, storage of artificially infected embryos incurred liquid nitrogen biobank contamination (100%). Observations by scanning electron microscopy revealed that all the microorganisms were caught in the surface of embryos after the vitrification-thawed procedure. Nevertheless, embryos cultured in antibiotics and antimycotic medium developed to the hatched blastocyst stage, while artificially infected embryos cultured in antibiotic-free medium failed to develop. In conclusion, our findings support that both cross-contamination and cross-infection during embryo storage in liquid nitrogen biobanks are plausible. So, to ensure biosafety for the cryogenic storage, closed systems that avoid direct contact with liquid nitrogen must be used. Moreover, it seems essential to provide best practice guidelines for the cryogenic preservation and storage of gametes and embryos, to define appropriate quality and risk management procedures.
- Livestock-associated Methicillin-resistant "Staphylococcus aureus" from animals and animal products in the UK
2019-09-12 Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is an emerging problem in many parts of the world. Although animal-adapted LA-MRSA has been known for many years, recent reports suggest a possible increasing trend in the zoonotic transmission of LA-MRSA in Europe. Since its emergence in the early 2000’s, several investigations have indicated that persons in prolonged, repeated contact with affected livestock are at a higher risk of becoming colonized with LA-MRSA. LA-MRSA monitoring in livestock is voluntary under current EU legislation, and not all member states, including the UK, participate. UK LA-MRSA isolates have been detected through scanning surveillance, where samples are submitted from clinically diseased livestock for diagnostic investigation, and research studies. Surveys conducted on retail beef, pig and poultry meat on sale in the UK have also detected LA-MRSA. Taken together these results suggest that LA-MRSA is present in the UK, possibly at low prevalence level, as suggested by available evidence. In this review, we examine the data available from UK livestock and animal products, and make recommendations for future. We also review the findings from whole genome sequencing (WGS) of the possible lineage of some UK livestock isolates