2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- "Salmonella Infantis" and "Salmonella Enteritidis" specific bacteriophages isolated form poultry faeces as a complementary tool for cleaning and disinfection against "Salmonella"
2020-02-10 Salmonellosis represents an important public health concern. Several authors point out the inefficiency of the cleaning and disinfection protocols to remove the bacteria from the field. For this reason, innovative techniques, as bacteriophages, could be implemented to control the bacteria. The main objectives of this study were to assess the effect of bacteriophages against Salmonella Infantis and Salmonella Enteritidis on farm surfaces, and to evaluate bacteriophage procedure application as sanitiser against Salmonella in field conditions. Thus, most prevalent serovars in poultry production were selected (Salmonella Infantis and Salmonella Enteritidis) to contaminate farm facilities. Then, two specific bacteriophages isolated from poultry faeces were applied against them. Results showed Salmonella Infantis and Salmonella Enteritidis decreased of 4.55 log10CFU/mL and 3.85 log10CFU/mL, respectively; the maximum reduction in Salmonella was the 5th day, after 108 PFU/mL and 103 PFU/mL bacteriophage application. These results highlight bacteriophages as a promising tool together with cleaning and disinfection.
- "Salmonella" bacteriophage diversity according to most prevalent "Salmonella" serovars in layer and broiler poultry farms from Eastern Spain
2020-08-19 The exploration of novel nonantibiotic interventions in the field, such as the use of bacteriophages, is necessary to avoid the presence of Salmonella. Bacteriophages are a group of viruses widely distributed in nature, strictly associated with the prokaryotic cell. Researchers have demonstrated the success of phage therapy in reducing Salmonella counts in poultry products. However, the impact that phage concentration in the environment may have against certain Salmonella serovars is not well understood. Therefore, the aim of this study was to assess Salmonella phage prevalence in commercial poultry farms in terms of the production type: layers or broilers. The most prevalent Salmonella serovars isolated in poultry production were used for phage isolation. Salmonella specific phages were isolated from 141 layer and broiler farms located in the Valencia region during 2019. Analysis of the samples revealed that 100% presented Salmonella phages, the most prevalent being against serovar S. Enteritidis (93%), followed by S. Virchow (59%), S. Typhimurium (55%), S. Infantis (52%) and S. Ohio (51%). These results indicate that poultry farms could represent an important source of Salmonella phages. Nevertheless, further studies are needed to assess the epidemiology of phages against other serovars present in other countries and their diversity from the point of view of molecular studies.
- Fast and slow-growing management systems : characterisation of broiler caecal microbiota development throughout the growing period
2020-08-12 Caecal microbiota and its modulation play an important role in poultry health, productivity and disease control. Moreover, due to the emergence of antimicrobial-resistant bacteria, society is pressing for a reduction in antibiotic administration by finding e ective alternatives at farm level, such as less intensified production systems. Hence, the aim of this study was to characterise the caecal microbiota in two di erent broiler management systems, fast and slow-growing, using 16S rRNA sequencing analysis. To this end 576 broilers were reared in two di erent management systems (fast and slow-growing). Results showed that Firmicutes represented the dominant phylum for both systems. At the onset, Proteobacteria was the second prevalent phylum for fast and slow-growing breeds, outnumbering the Bacteroidetes. However, during the rest of the production cycle, Bacteroidetes was more abundant than Proteobacteria in both groups. Finally, regardless of the management system, the most predominant genera identified were Oscillospira spp., Ruminococcus spp., Coprococcus spp., Lactobacillus spp. and Bacteroides spp. In conclusion, fast and slow-growing broiler microbiota are in constant development throughout rearing, being relatively stable at 21 days of age. Regarding the genus, it should be noted that the three most abundant groups for both systems, Ruminococcus spp., Lactobacillus spp. and Bacteroides spp., are related to better productive performance and intestinal health.