2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    UCH
    Polyphenols and IUGR pregnancies effects of the antioxidant hydroxytyrosol on the hippocampus proteome in a porcine model2022-06-09

    Supplementation of a mother’s diet with antioxidants such as hydroxytyrosol (HTX) has been proposed to ameliorate the adverse phenotypes of foetuses affected by intrauterine growth restriction (IUGR). Our previous studies showed, in a porcine model of IUGR, an effect of maternal HTX supplementation on the neurotransmitter profile of several brain areas and the morphology of the hippocampus in 100 days old foetuses. The present study analyzed the impact of maternal HTX supplementation on the hippocampus proteome at this foetal age by TMT10plex labelling. Eleven differentially abundant proteins were identified by comparing both conditions, and eight of them downregulated and three upregulated in the HTX-treated group. The downregulated proteins were mainly involved in protein synthesis and RNA metabolism and may explain the differences in neuron differentiation in the HTX-treated group. The upregulated proteins were related to cell detoxification and could represent a potential mechanism to explain the neuroprotective effect of HTX.

  • Thumbnail Image
    Publication
    UCH
    Maternal supplementation with herbal antioxidants during pregnancy in swine2021-04-23

    The effects of a combined supplementation with herbal antioxidants during pregnancy on reproductive traits and piglet performance (number of live, dead, and mummified newborns and litter weight at birth and individual body weight at both birth and weaning) were assessed in a total of 1027 sows (504 treated and 523 control females) kept under commercial breeding conditions. The supplementation increased the number of live-born piglets (13.64 0.11 vs. 12.96 0.13 in the controls; p = 0.001) and the total litter weight, decreasing the incidence of low-weight piglets without affecting the number of stillbirths and mummified newborns. Such an effect was modulated by the number of parity and the supplementation, with supplementation increasing significantly the number of living newborns in the first, second, sixth, and seventh parities (0.87, 1.10, 1.49, and 2.51 additional piglets, respectively; p < 0.05). The evaluation of plasma vitamin concentration and biomarkers of oxidative stress (total antioxidant capacity, TAC, and malondialdehyde concentration, MDA) performed in a subset of farrowing sows and their lighter and heavier piglets showed that plasma levels of both vitamins were significantly higher in the piglets than in their mothers (p < 0.05 for vitamin C and p < 0.005 for vitamin E), with antioxidant supplementation increasing significantly such concentrations. Concomitantly, there were no differences in maternal TAC but significantly higher values in piglets from supplemented sows (p < 0.05). On the other hand, supplementation decreased plasma MDA levels both in the sows and their piglets (p < 0.05). Finally, the piglets from supplemented mothers showed a trend for a higher weaning weight (p = 0.066) and, specifically, piglets with birth weights above 1 kg showed a 7.4% higher weaning weight (p = 0.024). Hence, the results of the present study, with high robustness and translational value by offering data from more than 1000 pregnancies under standard breeding conditions, supports that maternal supplementation with herbal antioxidants during pregnancy significantly improves reproductive efficiency, litter traits, and piglet performance.

  • Thumbnail Image
    Publication
    UCH
    Polyphenols and IUGR pregnancies : intrauterine growth restriction and hydroxytyrosol affect the development and neurotransmitter profile of the hippocampus in a pig model2021-09-22

    Intrauterine growth restriction (IUGR) refers to poor growth of a fetus during pregnancy due to deficient maternal nutrition or oxygen supply. Supplementation of a mother’s diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of IUGR. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of the total gestational period), and fetuses were sampled at day 100 of gestation. Fetuses were classified as normal body weight (NBW) or low body weight (LBW) as a consequence of IUGR, constituting four groups: NBW-Control, NBW-HTX, LBW-Control, and LBW-HTX. The brain was removed, and the hippocampus, amygdala, and prefrontal cortex were rapidly dissected. Neuronal markers were studied by immunohistochemistry, and a decrease in the number of mature neurons in the hippocampal Cornu Ammonis subfield 1 (CA1) and the Dentate Gyrus (DG) regions was observed in LBW fetuses together with a higher number of immature neurons and other alterations in neuronal morphology. Furthermore, IUGR conditions altered the neurotransmitter (NT) profile, since an increase in the serotonin (5-HT) pathway was observed in LBW fetuses. Supplementation with HTX was able to reverse the morphological and neurochemical changes, leading both characteristics to values similar to those of NBW fetuses.

  • Thumbnail Image
    Publication
    UCH
    Polyphenols and IUGR pregnancies : effects of the antioxidant hydroxytyrosol on brain neurochemistry and development in a porcine model2021-05-31

    Supplementation of a mother’s diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of fetuses at risk of intrauterine growth restriction. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of total gestational period), and individuals were sampled at three different ages: 100-day-old fetuses and 1-month- and 6-month-old piglets. After euthanasia, the brain was removed and the hippocampus, amygdala, and prefrontal cortex were dissected. The profile of the catecholaminergic and serotoninergic neurotransmitters (NTs) was characterized and an immunohistochemical study of the hippocampus was performed. The results indicated that maternal supplementation with HTX during pregnancy affected the NT profile in a brain-area-dependant mode and it modified the process of neuron differentiation in the hippocampal CA1 and GD areas, indicating that cell differentiation occurred more rapidly in the HTX group. These effects were specific to the fetal period, concomitantly with HTX maternal supplementation, since no major differences remained between the control and treated groups in 1-month- and 6-month-old pigs.