2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- Impact of the zinc complexation of polytopic polyaza ligands on the interaction with double and single stranded DNA/RNA and antimicrobial activity
2023-03-27 Metal complexes have gained a huge interest in the biomedical research in the last decade because of the access to unexplored chemical space with regards to organic molecules and to present additional functionalities to act simultaneously as diagnostic and therapeutic agents. Herein, we evaluated the interaction of two polytopic polyaza ligands and their zinc complexes with DNA and RNA by UV thermal denaturation, fluorescence and circular dichroism spectroscopic assays. The zinc coordination was investigated by X-ray diffraction and afforded the structure of the binuclear zinc complex of PYPOD. Thermal denaturation of DNA and RNA and fluorimetry analysis revealed preferential binding of the zinc-PHENPOD complexes towards GC-containing DNA in contrast to the free ligands. On the other hand, PYPOD metal complexes, compared to the free ligand, stabilized AT-based DNA (B-form) better than AU-RNA (A-form). With regards to single stranded RNA, the binuclear complex of PHENPOD and the free ligand can efficiently identify polyadenylic acid (poly A) among other RNA sequences by circular dichroism spectroscopy. The antimicrobial activity in S. aureus and E. coli bacteria showed the highest activity for the free ligands and their trinuclear zinc complexes. This work can provide valuable insights into the impact of the nuclearity of polytopic polyaza ligands in the binding to DNA/RNA and the antimicrobial effect.
- Development of potent tripodal G-quadruplex DNA binders and their efficient delivery to cancer cells by aptamer functionalised liposomes
2022-12-15 Two new ligands (TPB3P and TPB3Py) showing a strong stabilisation effect and good selectivity for G4 over duplex DNAs have been synthesised. The ligands hold three analogous polyamine pendant arms (TPA3P and TPA3Py) but differ in the central aromatic core, which is a triphenylbenzene moiety instead of a triphenylamine moiety. Both TPB3P and TPB3Py exhibit high cytotoxicity in MCF-7, LN229 and HeLa cancer cells in contrast to TPA-based ligands, which exhibit no significant cytotoxicity. Moreover, the most potent G4 binders have been encapsulated in liposomes and AS1411 aptamer-targeted liposomes reaching nanomolar IC50 values for the most cytotoxic systems.
- Visualizing the atherosclerotic plaque: a chemical perspective
2014-02-14 Atherosclerosis is the major underlying pathologic cause of coronary artery disease. An early detection of the disease can prevent clinical sequellae such as angina, myocardial infarction, and stroke. The different imaging techniques employed to visualize the atherosclerotic plaque provide information of diagnostic and prognostic value. Furthermore, the use of contrast agents helps to improve signal-to-noise ratio providing better images. For nuclear imaging techniques and optical imaging these agents are absolutely necessary. We report on the different contrast agents that have been used, are used or may be used in future in animals, humans, or excised tissues for the distinct imaging modalities for atherosclerotic plaque imaging.
- Macrocyclic pyclen-based Gd3+ complex with high relaxivity and pH response
2020-05-07 We report the synthesis and characterization of the macrocyclic ligand 2,2′-((2-(3,9-bis(carboxymethyl)-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-6-yl)ethyl)azanediyl)diacetic acid (H4L) and several of its complexes with lanthanide ions. The structure of the free ligand was determined using X-ray diffraction measurements. Two N atoms of the pyclen moiety in the trans position are protonated in the solid state, together with the exocyclic N atom and one of the carboxylate groups of the ligand. The relaxivity of the Gd3+ complex was found to increase from 6.7 mM–1 s–1 at pH 8.6 to 8.5 mM–1 s–1 below pH ≈ 6.0. Luminescence lifetime measurements recorded from H2O and D2O solutions of the Eu3+ complex evidence the presence of a single complex species in solution at low pH (∼5.0) that contains two inner-sphere water molecules. DFT calculations suggest that the coordination environment of the Ln3+ ion is fulfilled by the four N atoms of the pyclen unit, two oxygen atoms of the macrocyclic acetate groups, and an oxygen atom of an exocyclic carboxylate group. The two inner-sphere water molecules complete coordination number nine around the metal ion. At high pH (∼9.3), the lifetime of the excited 5D0 level of Eu3+ displays a biexponential behavior that can be attributed to the presence of two species in solution with hydration numbers of q = 0 and q = 1. The 1H NMR and DOSY spectra recorded from solutions of the Eu3+ and Y3+ complexes reveal a structural change triggered by pH and the formation of small aggregates at high pH values.
- Donor radii in rare-earth complexes
2023-10-02 We present a set of donor radii for the rare-earth cations obtained from the analysis of structural data available in the Cambridge Structural Database (CSD). Theoretical calculations using density functional theory (DFT) and wave function approaches (NEVPT2) demonstrate that the Ln-donor distances can be broken down into contributions of the cation and the donor atom, with the minimum in electron density (ρ) that defines the position of (3,–1) critical points corresponding well with Shannon’s crystal radii (CR). Subsequent linear fits of the experimental bond distances for all rare earth cations (except Pm3+) afforded donor radii (rD) that allow for the prediction of Ln-donor distances regardless of the nature of the rare-earth cation and its oxidation state. This set of donor radii can be used to rationalize structural data and identify particularly weak or strong interactions, which has important implications in the understanding of the stability and reactivity of complexes of these metal ions. A few cases of incorrect atom assignments in X-ray structures were also identified using the derived rD values.
- Binding mode and selectivity of a scorpiand-like polyamine ligand to single- and double-stranded DNA and RNA: metal- and pH-driven modulation
2017-11-13 The interaction of a polyazacyclophane ligand having an ethylamine pendant arm functionalized with an anthryl group (L), with the single-stranded polynucleotides polyA, polyG, polyU, and polyC as well as with the double-stranded polynucleotides polyA–polyU, poly(dAT)2, and poly(dGC)2 has been followed by UV/Vis titration, steady state fluorescence spectroscopy, and thermal denaturation measurements. In the case of the single-stranded polynucleotides, the UV/Vis and fluorescence titrations permit to distinguish between sequences containing purine and pyrimidine bases. For the double-stranded polynucleotides the UV/Vis measurements show for all of them hypochromicity and bathochromic shifts. However, the fluorescence studies reveal that both polyA–polyU and poly(dAT)2 induce a twofold increase in the fluorescence, whereas interaction of poly(dGC)2 with the ligand L induces a quenching of the fluorescence. Cu2+ modulates the interaction with the double-stranded polynucleotides due to the conformation changes that its coordination induces in compound L. In general, the spectroscopic studies show that intercalation seems to be blocked by the formation of the metal complex. All these features suggest the possibility of using compound L as a sequence-selective fluorescence probe.
- Supramolecular complexation for environmental control
2012-03-22 Supramolecular complexes offer a new and efficient way for the monitoring and removal of many substances emanating from technical processes, fertilization, plant and animal protection, or e.g. chemotherapy. Such pollutants range from toxic or radioactive metal ions and anions to chemical side products, herbicides, pesticides to drugs including steroids, and include degradation products from natural sources. The applications involve usually fast and reversible complex formation, due to prevailing non-covalent interactions. This is of importance for sensing as well as for separation techniques, where the often expensive host compounds can then be reused almost indefinitely. Immobilization of host compounds, e.g. on exchange resins or on membranes, and their implementation in smart new materials hold particular promise. The review illustrates how the design of suitable host compounds in combination with modern sensing and separation methods can contribute to solve some of the biggest problems facing chemistry, which arise from the everyday increasing pollution of the environment.