2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    UCH
    Olive pomace oil and acid oil as alternative fat sources in growing-finishing broiler chicken diets2022-10-15

    The aim of the present study was to investigate the effect of dietary supplementation of olive pomace oil and olive pomace acid oil, which are rich in monounsaturated fatty acids (FA) but differ in free FA content, on growth performance, digestibility and FA profile of abdominal fat and breast meat. A total of 3,048 one-day-old mixed-sex broiler chickens (Ross 308) were randomly distributed into 24 pens and 3 dietary treatments (8 replicates per treatment). Experimental diets were administered for growing (from 22 to 29 d) and finishing (from 30 to 39 d) periods, consisting of a basal diet supplemented with 6% (as-fed basis) palm oil (PO), olive pomace oil (O), or olive pomace acid oil (OA). Animals fed O achieved the lowest feed conversion ratio (P < 0.01), together with the highest AME value (P = 0.003), but no differences were observed between OA and PO. Regarding FA digestibility, O and OA showed higher values than PO for all FA in both apparent ileal digestibility (AID) and apparent total tract digestibility. Comparing the AID between O and OA, no differences were observed for total FA, monounsaturated FA, or polyunsaturated FA, but animals fed OA showed lower AID values for saturated FA than those fed O (P < 0.001). The FA profile of abdominal fat and breast meat reflected that of the diet, with higher monounsaturated FA and lower saturated FA in animals fed O and OA compared to those fed PO. In sum, the inclusion of both olive pomace oil and acid oil in growing-finishing broiler chicken diets led to great performance parameters and high FA digestibility values, together with an enrichment with monounsaturated FA in abdominal fat and breast meat compared to the use of palm oil. However, a better AID of saturated FA and feed conversion ratio is achieved with O compared to OA.

  • Thumbnail Image
    Publication
    UCH
    Influence of free fatty acid content and degree of fat saturation in laying hen diets on egg quality, yolk fatty acid profile, and cholesterol content2023-01-24

    The aim of the present study was to evaluate the effect of dietary free fatty acid (FFA) content and the degree of saturation on egg quality, yolk fatty acid (FA) profile, and yolk cholesterol content. For a 15-wk period, a total of 144 laying hens (19- wk-old) were randomly assigned to 8 treatments arranged in a 2 £ 4 factorial design, with 2 sources of crude oil (soybean oil and palm oil) and 4 levels of FFA (10, 20, 30, and 45%). The dietary treatments were achieved by progressively substituting the original oils with equivalent amounts of their corresponding acid oils (soybean acid oil and palm fatty acid distillate, respectively). No differences in ADFI or egg mass were found. However, dietary FFA reduced egg production (linear, P < 0.05) and increased the feed conversion ratio (linear, P < 0.05). Higher levels of FFA in soybean diets resulted in higher egg weight with higher albumen and yolk weights (linear, P < 0.01). Palm diets presented higher yolk:albumen ratio than soybean diets (P < 0.001), but the effect of FFA did not follow a linear trend. Hens fed soybean diets laid eggs with higher Haugh units (HU) than palm diets (P < 0.001), although increasing the dietary FFA% reduced the HU values in both (linear, P < 0.001). Palm diets enhanced shell quality with greater resistance to breakage, and higher dry matter and ash content than soybean diets (P < 0.05). No differences in egg chemical composition and yolk cholesterol content were found (P > 0.05). The saturation degree had a significant effect on all the analyzed yolk FA (P < 0.001) except for arachidonic acid (C20:4 n-6), whereas increasing the FFA content did not affect to a great extent. These results show that varying dietary FFA level did not affect egg quality and yolk composition as much as the dietary fat source did, supporting the use of acid oils and fatty acid distillates as fat ingredients for feed.

  • Thumbnail Image
    Publication
    UCH
    Effects of dietary free fatty-acid content and saturation degree on lipid-class composition and fatty-acid digestibility along the gastrointestinal tract in broiler starter chickens2019-10-01

    The aim of the present study is to assess the effect of the dietary free fatty acid (FFA) content and dietary fat saturation degree on the fatty-acid (FA) digestibility and lipid-class content along the gastrointestinal tract and excreta in broiler chickens. The 8 experimental diets resulted from replacing crude soybean oil with soybean acid oil from chemical refining, or crude palm oil with palm FA distillate from physical refining. Thus, there were 4 soybean and 4 palm diets with 6% added fat varying in their FFA% (5, 15, 35, and 50%). Samples of digestive content (gizzard, duodenum, jejunum, and ileum) and excreta were collected at 14 D for the determination of the FA digestibility and lipid-class content. The total FA digestibility coefficients reported for the chickens fed S diets in the jejunum, ileum, and excreta were higher than for those fed P diets (P ≤ 0.02). The general greater digestibility of the unsaturated diets was mainly explained by a higher contribution of the ileum to the absorption of saturated FA. The dietary FFA content mainly affected the FA absorption process. The diets with 50% FFA presented lower saturated FA digestibility coefficients in the jejunum and ileum (P ≤ 0.03), and higher content of FFA in the ileum and excreta (P ≤ 0.014), in comparison to the diets with 5% FFA. The 15% FFA diets were not different from the 5% FFA diets, regarding the saturated FA digestibility in the jejunum and excreta, and the FFA content in the ileum and excreta. It was concluded that unsaturated diets with moderate content of dietary FFA (up to 15%) could be used in broiler-chicken starter diets, as they led to similar FA absorption and performance results to the diets with the lowest dietary FFA content. From the present study, it has also been concluded that dietary saturated FA content has a greater impact on FA absorption than the dietary FFA content has.