2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    UCH
    Genome hypermobility by lateral transduction2018-10-12

    Genetic transduction is a major evolutionary force that underlies bacterial adaptation.Here we report that the temperate bacteriophages ofStaphylococcusaureusengage in adistinct form of transduction we term lateral transduction. Staphylococcal prophagesdo not follow the previously described excision-replication-packaging pathway but insteadexcise late in their lytic program. Here, DNA packaging initiates in situ from integratedprophages, and large metameric spans including several hundred kilobases of theS.aureusgenome are packaged in phage heads at very high frequency. In situ replication beforeDNA packaging creates multiple prophage genomes so that lateral-transducing particles formduring normal phage maturation, transforming parts of theS.aureuschromosome intohypermobile regions of gene transfer.

  • Thumbnail Image
    Publication
    UCH
    Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements2021-11-08

    It is commonly assumed that the horizontal transfer of most bacterial chromosomal genes is limited, in contrast to the frequent transfer observed for typical mobile genetic elements. However, this view has been recently challenged by the discovery of lateral transduction in Staphylococcus aureus, where temperate phages can drive the transfer of large chromosomal regions at extremely high frequencies. Here, we analyse previously published as well as new datasets to compare horizontal gene transfer rates mediated by different mechanisms in S. aureus and Salmonella enterica. We find that the horizontal transfer of core chromosomal genes via lateral transduction can be more efficient than the transfer of classical mobile genetic elements via conjugation or generalized transduction. These results raise questions about our definition of mobile genetic elements, and the potential roles played by lateral transduction in bacterial evolution.

  • Thumbnail Image
    Publication
    UCH
    Lateral transduction is inherent to the life cycle of the archetypical "Salmonella" phage P222021-11-08

    Lysogenic induction ends the stable association between a bacteriophage and its host, and the transition to the lytic cycle begins with early prophage excision followed by DNA replication and packaging (ERP). This temporal program is considered universal for P22-like temperate phages, though there is no direct evidence to support the timing and sequence of these events. Here we report that the long-standing ERP program is an observation of the experimentally favored Salmonella phage P22 tsc229 heat-inducible mutant, and that wildtype P22 actually follows the replication-packaging-excision (RPE) program. We find that P22 tsc229 excises early after induction, but P22 delays excision to just before it is detrimental to phage production. This allows P22 to engage in lateral transduction. Thus, at minimal expense to itself, P22 has tuned the timing of excision to balance propagation with lateral transduction, powering the evolution of its host through gene transfer in the interest of selfpreservation.

  • Thumbnail Image
    Publication
    UCH
    Hijacking the hijackers : "Escherichia coli" pathogenicity islands redirect helper phage packaging for their own benefit.2019-09-05

    Phage-inducible chromosomal islands (PICIs) represent a novel and universal class of mobile genetic elements, which have broad impact on bacterial virulence. In spite of their relevance, how the Gramnegative PICIs hijack the phage machinery for their own specific packaging and how they block phage reproduction remains to be determined. Using genetic and structural analyses, we solve the mystery here by showing that the Gram-negative PICIs encode a protein that simultaneously performs these processes. This protein, which we have named Rpp (for redirecting phage packaging), interacts with the phage terminase small subunit, forming a heterocomplex. This complex is unable to recognize the phage DNA, blocking phage packaging, but specifically binds to the PICI genome, promoting PICI packaging. Our studies reveal the mechanism of action that allows PICI dissemination in nature, introducing a new paradigm in the understanding of the biology of pathogenicity islands and therefore of bacterial pathogen evolution.

  • Thumbnail Image
    Publication
    UCH
    Phage-inducible chromosomal islands are ubiquitous within the bacterial universe2018-06-16

    Phage-inducible chromosomal islands (PICIs) are a recently discovered family of pathogenicity islands that contribute substantively to horizontal gene transfer, host adaptation and virulence in Gram-positive cocci. Here we report that similar elements also occur widely in Gram-negative bacteria. As with the PICIs from Gram-positive cocci, their uniqueness is defined by a constellation of features: unique and specific attachment sites, exclusive PICI genes, a phage-dependent mechanism of induction, conserved replication origin organization, convergent mechanisms of phage interference, and specific packaging of PICI DNA into phage-like infectious particles, resulting in very high transfer frequencies. We suggest that the PICIs represent two or more distinct lineages, have spread widely throughout the bacterial world, and have diverged much more slowly than their host organisms or their prophage cousins. Overall, these findings represent the discovery of a universal class of mobile genetic elements.