2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- High myopia and the complement system : factor H in myopic maculopathy
2021-06-12 High myopia (HM) is both a medical problem and refractive error of the eye owing to excessive eyeball length, which progressively makes eye tissue atrophic, and is one of the main causes for diminishing visual acuity in developed countries. Despite its high prevalence and many genetic and proteomic studies, no molecular pattern exists that explain the degenerative process underlying HM, which predisposes patients to other diseases like glaucoma, cataracts, retinal detachment and chorioretinal atrophy that affect the macular area. To determine the relation between complement Factors H (CFH) and D (CFD) and the maculopathy of patients with degenerative myopia, we studied aqueous humor samples that were collected by aspiration from 122 patients during cataract surgery. Eyes were classified according to eyeball axial length as high myopia (axial length > 26 mm), low myopia (axial length 23.5–25.9 mm) and control (axial length < 23.4 mm). The degree of maculopathy was classified according to fundus oculi findings following IMI’s classification. Subfoveal choroid thickness was measured by optical coherence tomography. CFH and CFD measurements were taken by ELISA. CFH levels were significantly high in the high myopia group vs. the low myopia and control groups (p < 0.05). Significantly high CFH values were found in those eyes with choroid atrophy and neovascularization (p < 0.05). In parallel, the CFH concentration correlated inversely with choroid thickness (R = 0.624). CFD levels did not correlate with maculopathy. All the obtained data seem to suggest that CFH plays a key role in myopic pathology.
- Lipid peroxidation in subretinal fluid : some light on the prognosis factors
2021-03-30 The aim of this study was to identify a relation between the clinical characteristics and differences in lipid peroxidation in the subretinal fluid (SRF) of rhegmatogenous retinal detached patients by malondialdehyde (MDA) quantification. We collected 65 SRF samples from consecutive patients during scleral buckling surgery in rhegmatogenous retinal detachment (RRD) eyes. In addition to a complete ophthalmic evaluation, we studied the refractive status, evolution time, and the number of detached retinal quadrants to establish the extension of RRD.We studied the clinical aspects and oxidative stress and compared the characteristics among groups. We found that neither the evolution time of RRD nor the patients’ age correlated with the MDA concentration in the SRF. The MDA and the protein content of the SRF increased in the patients with high myopia and with more extended RRD. Our results suggest that oxidative imbalance was important in more extended retinal detachment (RD) and in myopic eyes and should be taken into account in the managing of these cases.
- Imbalance between oxidative stress and growth factors in human high myopia
2020-05-14 Myopia is one of the commonest eye pathologies that could affect 2.56 billion people by 2020. Today high myopia is a leading cause of blindness worldwide due to associated ocular illness. Nevertheless, the cellular bases for these diseases to develop are unclear in many areas. We conducted a prospective study of oxidative stress and growth factors in human myopic and non myopic eyes in an attempt to increase our understanding of the underlying physiopathological conditions to adequately early diagnose, prevent and treat the retina problem that derives from myopia. Aqueous humor samples were obtained from 41 patients being operated for cataracts in our hospital. Axial length, refractive status and complete ophthalmologic examination were recorded. The VEGF and HGF levels were determined by an ELISA kit. Total antioxidant capacity and total nitrites/nitrate levels were established with a lab kit. We show for the first time an increase in the total nitrite levels in high myopia. We also propose for the first time the concurrence of three factors: myopia, oxidative stress, and oxidative stress together with growth factors in the same group of patients. In this way, it would not be accurate to envision high myopia as a type of normal myopia, but one with more diopters or longer axial length.