2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- A general framework for a class of non-linear approximations with applications to image restoration
2018-03-20 In this paper, we establish sufficient conditions for the existence of optimal nonlinear approximations to a linear subspace generated by a given weakly-closed (non-convex) cone of a Hilbert space. Most non-linear problems have difficulties to implement good projection-based algorithms due to the fact that the subsets, where we would like to project the functions, do not have the necessary geometric properties to use the classical existence results (such as convexity, for instance). The theoretical results given here overcome some of these difficulties. To see this we apply them to a fractional model for image deconvolution. In particular, we reformulate and prove the convergence of a computational algorithm proposed in a previous paper by some of the authors. Finally, some examples are given.