2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- Progesterone anti-inflammatory properties in hereditary retinal degeneration
2019-05-12 The interactions between steroid gonadal hormones and the retina (a part of the visual system and the central nervous system (CNS)) have received limited attention and beneficial effects of these hormones in retinal diseases is controversial. Retinitis pigmentosa (RP) is the most common cause of retinal hereditary blindness and to date no treatment is available. However, results regarding the effects of progesterone on the progression of RP are promising. With the idea of demonstrating if the progesterone retinal protection in RP is related to its possible anti-inflammatory properties, we have administered orally progesterone to rd10 mice, an animal model of RP. We observed that progesterone decreased photoreceptors cell death, reactive gliosis and the increase in microglial cells caused by RP. We also examined the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzyme responsible for NO production. The results demonstrated a decrease in nNOS expression only in control mice treated with progesterone. Inflammation has been related with an increase in lipid peroxidation. Noticeably progesterone administration was able to diminish retinal malondialdehyde (MDA, a lipid peroxidation product) concentrations in rd10 mice. Altogether, we can conclude that progesterone could be a good therapeutic option not only in RP but also for other retinal diseases that have been associated with inflammation and lipid peroxidation.
- Lipoic acid and progesterone alone or in combination ameliorate retinal degeneration in an experimental model of hereditary retinal degeneration
2018-05-01 Retinitis pigmentosa (RP) is a group of inherited retinopathies characterized by photoreceptors death. Our group has shown the positive progesterone (P4) actions on cell death progression in an experimental model of RP. In an effort to enhance the beneficial effects of P4, the aim of this study was to combine P4 treatment with an antioxidant [lipoic acid (LA)] in the rd1 mice. rd1 and control mice were treated with 100 mg/kg body weight of P4, LA, or a combination of both on postnatal day 7 (PN7), 9, and 11, and were sacrificed at PN11. The administration of LA and/or P4 diminishes cell death in rd1 retinas. The effect obtained after the combined administration of LA and P4 is higher than the one obtained with LA or P4 alone. The three treatments decreased GFAP staining, however, in the far peripheral retina, and the two treatments that offered better results were LA and LA plus P4. LA or LA plus P4 increased retinal glutathione (GSH) concentration in the rd1 mice. Although LA and P4 are able to protect photoreceptors from death in rd1 mice retinas, a better effectiveness is achieved when administering LA and P4 at the same time.