2. Universidad Cardenal Herrera-CEU
Permanent URI for this communityhttps://hdl.handle.net/10637/13
Search Results
- Effect of selection for growth rate on the rabbit (Oryctolagus cuniculus) immune system and its response after experimental "Staphylococcus aureus" infection
2023-09 The aim of the work was to evaluate if genetic selection for daily gain may affect the immune system. Two experiments were performed. The first one involved 80 rabbit females and their first two litters to explore the effect of selection on the ability of animals to maintain immune competence. Two generations from a line selected for average daily gain (ADG) were evaluated (VR19 generation 19th, nā=ā43; VR37 generation 37th, nā=ā37). In females, the effect of selection and its interaction with physiological state were not significant for any trait. In litters, the selection criterion increased the granulocyte to lymphocyte ratio. The second experiment involved 73 19-week-old females (VR19, nā=ā39; VR37, nā=ā34) to explore the effect of genetic selection on immune response after S. aureus infection. The VR37 rabbit females had lower counts for total lymphocytes, CD5+, CD4+, CD8+, CD25+, monocytes, the CD4+/CD8+ ratio and platelets than those of VR19 (-14, -21, -25, -15, -33, -18, -11 and -11%, respectively; Pā<ā0.05). VR37 had less erythema (-8.4 percentage points; Pā<ā0.05), fewer nodules (-6.5 percentage points; Pā<ā0.05) and a smaller nodule size (-0.65 cm3 on 7 day post-inoculation; Pā<ā0.05) compared to VR19. Our study suggests that genetic selection for average daily gain does not negatively affect the maintenance of a competent immune system or the ability to establish immune response. It seems that such selection may improve the response to S. aureus infections.
- Pathogenesis of intradermal staphylococcal infections: rabbit experimental approach to natural "Staphylococcus aureus" skin infections
2020-06 Despite the enormous efforts made to achieve effective tools that fight against Staphylococcus aureus, the results have not been successful. This failure may be due to the absence of truly representative experimental models. To overcome this deficiency, the present work describes and immunologically characterizes the infection for 28 days, in an experimental low-dose (300 colony-forming units) intradermal model of infection in rabbits, which reproduces the characteristic staphylococcal abscess. Surprisingly, when mutant strains in the genes involved in virulence (JĪagr, JĪcoaĪvwb, JĪhla, and JĪpsmĪ±) were inoculated, no strong effect on the severity of lesions was observed, unlike other models that use high doses of bacteria. The inoculation of a human rabbitized (FdltBr) strain demonstrated its capacity to generate a similar inflammatory response to a wild-type rabbit strain and, therefore, validated this model for conducting these experimental studies with human strains. To conclude, this model proved reproducible and may be an option of choice to check both wild-type and mutant strains of different origins.
- Genomic characterization of "Staphylococcus aureus" in wildlife
2023-03-15 Staphylococcus aureus is an opportunistic multi-host pathogen that threatens both human and animal health. Animals can act as a reservoir of S. aureus for humans, but very little is known about wild animalsā epidemiological role. Therefore, in this study, we performed a genomic characterization of S. aureus isolates from wildlife, hunters, and their auxiliary hunting animals of Eastern Spain. Of 20 different species, 242 wild animals were examined, of which 28.1% were S. aureus carriers. The common genet, the Iberian ibex, and the European hedgehog were the species with the highest S. aureus carriage. We identified 30 different sequence types (STs), including lineages associated with wild animals such as ST49 and ST581, multispecies lineages such as ST130, ST398, and ST425, and lineages commonly isolated from humans, including ST1 and ST5. The hunters and the single positive ferret shared ST5, ST398, or ST425 with wild animals. In wildlife isolates, the highest resistance levels were found for penicillin (32.8%). For virulence factors, 26.2% of them carried superantigens, while 14.8% harbored the immune evasion cluster (IEC), which indicates probable human origin. Our findings suggest that wild animals are a reservoir of clinically relevant genes and lineages that could have the potential to be transmitted to humans. These data support the notion that wildlife surveillance is necessary to better understand the epidemiology of S. aureus as a pathogen that circulates among humans, animals, and the environment.