2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    UCH
    Colostrum immunoglobulin G concentration of multiparous Jersey cows at first and second milking is associated with parity, colostrum yield, and time of first milking, and can be estimated with Brix refractometry2017-07

    The objective of this study was to evaluate colostrum IgG concentration harvested at first and second milking from multiparous Jersey cows, the dam's lactation number, colostrum yield, and time of first milking. In addition, we validated the use of a Brix refractometer to estimate IgG concentration in colostrum from multiparous Jersey cows using radial immunodiffusion as the reference method. Colostrum samples and total weight of colostrum harvested at first (n = 134) and second (n = 68) milking were collected from 134 multiparous Jersey cows housed in a California herd. Fresh colostrum samples were analyzed for IgG concentration with Brix refractometry and frozen samples by radial immunodiffusion. A total of 90.4 and 42.7% of the samples from first and second milking met industry standards of quality for IgG concentration (>50 g/L). Second and third lactation cows had similar colostrum IgG concentration but lower than cows on their fourth and greater lactation. At second milking, 56.4% of cows on their fourth or greater lactation had colostrum IgG concentrations >50 g/L. When colostrum yield increased from low (<3 kg), medium (3 to 6 kg), to high (>6 kg), IgG concentration decreased. Higher IgG concentration was observed on colostrum harvested at <6 h (short) versus 6 to 11 h (medium) after calving. However, IgG concentration in colostrum harvested after 11 h (long) was similar to that harvested at short and medium time. Readings of %Brix were highly correlated with IgG at first (r = 0.81) and second (r = 0.77) milking. The best Brix threshold to identify colostrum from first milking with >50 IgG g/L was 20.9% based on logit equations with Youden's index criterion and 18.0% based on accuracy criterion. For colostrum harvested at second milking, similar Brix thresholds were obtained, 19.2 and 19.0%, regardless of whether Youden's index or accuracy was used as the selection criterion. Our results indicate that the dam's lactation number, colostrum yield, and time of first milking relative to calving are associated with IgG concentration in colostrum from multiparous Jersey cows. Second milking colostrum from mature Jersey cows should be evaluated to extend colostrum supply on dairies especially during times of shortage. Readings of %Brix can be used to rapidly estimate IgG concentration in Jersey colostrum harvested at first and second milking.

  • Thumbnail Image
    Publication
    UCH
    Effects of pregnancy on lumbar motion patterns and muscle responses2019-02-01

    BACKGROUND CONTEXT: The kinematics of the lumbar region and the activation patterns of the erector spinae muscle have been associated with the genesis of low back pain, which is one of the most common complications associated with pregnancy. Despite the high prevalence of pregnancy-related low back pain, the biomechanical adaptations of the lumbar region during pregnancy remain unknown. PURPOSE: This study analyzes lumbar spine motion and the activation pattern of the lumbar erector spinae muscle in healthy pregnant women. STUDY DESIGN: A case-control study. PATIENT SAMPLE: The study involved 34 nulliparous women (control group) and 34 pregnant women in the third trimester (week 36 § 1). OUTCOME MEASURES: We recorded the parameters of angular displacement of the lumbar spine in the sagittal plane during trunk flexion-extension, and the EMG activity of the erector spinae muscles during flexion, extension, eccentric and concentric contractions, and the myolectrical silence. METHODS: The participants performed several series of trunk flexion-extension movements, which were repeated 2 months postpartum. The position of the lumbar spine was recorded using an electromagnetic motion capture system. EMG activity was recorded by a surface EMG system and expressed as a percentage of a submaximal reference contraction. RESULTS: Antepartum measurements showed a decrease (relative to control and postpartum measurements) in lumbar maximum flexion (52.5 § 10.5° vs 57.3 § 7.7° and 58.7 § 8.6°; p < .01), the percentage of lumbar flexion during forward bending (56.4 § 5.6% vs 59.4 § 6.8% and 59.7 § 5.6%; p < .01), and the time keeping maximum levels of lumbar flexion (35.7 § 6.7% vs 43.8 § 5.3% and 50.1 § 3.7%; p < .01). Higher levels of erector spinae activation were observed in pregnant women during forward bending (10.1 § 4.8% vs 6.3 § 2.4% and 6.6 § 2.7%; p < .01) and eccentric contraction (12.1 § 5.2% vs 9.4 § 3.1% and 9.1 § 2.9%; p < .01), as well as a shortened erector spinae myoelectric silence during flexion. CONCLUSIONS: Pregnant women show adaptations in their patterns of lumbar motion and erector spinae activity during trunk flexion-extension. These changes could be associated with the genesis of pregnancy-related low back pain, by means of biomechanical protection mechanisms against the increase on abdominal mass and ligamentous laxity.