2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    UCH
    Glomerular and tubular effects of Dapagliflozin, Eplerenone and their combination in patients with Chronic Kidney Disease: a post-hoc analysis of the ROTATE-3 study2024-02

    Aim: Sodium-glucose co-transporter 2 inhibitors and mineralocorticoid receptor antagonists reduce albuminuria and the risk of kidney failure. The aim of this study was to investigate the effects of both agents alone and in combination on markers of the glomerular endothelial glycocalyx and tubular function. Methods: This post-hoc analysis utilized data of the ROTATE-3 study, a randomized cross-over study in 46 adults with chronic kidney disease and urinary albumin excretion ≥100 mg/24 h, who were treated for 4 weeks with dapagliflozin, eplerenone or its combination. The effects of dapagliflozin, eplerenone and the combination on outcome measures such as heparan sulphate, neuro-hormonal markers and tubular sodium handling were assessed with mixed repeated measures models. Results: The mean percentage change from baseline in heparan sulphate after 4 weeks treatment with dapagliflozin, eplerenone or dapagliflozin-eplerenone was -34.8% (95% CI -52.2, -10.9), -5.9% (95% CI -32.5, 31.3) and -28.1% (95% CI -48.4, 0.1) respectively. The mean percentage change from baseline in plasma aldosterone was larger with eplerenone [38.9% (95% CI 2.8, 87.7)] and dapagliflozin-eplerenone [32.2% (95% CI -1.5, 77.4)], compared with dapagliflozin [-12.5% (95% CI -35.0, 17.8)], respectively. Mean percentage change from baseline in copeptin with dapagliflozin, eplerenone or dapagliflozin-eplerenone was 28.4% (95% CI 10.7, 49.0), 4.2% (95% CI -10.6, 21.4) and 23.8% (95% CI 6.6, 43.9) respectively. Dapagliflozin decreased proximal absolute sodium reabsorption rate by 455.9 mmol/min (95% CI -879.2, -32.6), while eplerenone decreased distal absolute sodium reabsorption rate by 523.1 mmol/min (95% CI -926.1, -120.0). Dapagliflozin-eplerenone decreased proximal absolute sodium reabsorption [-971.0 mmol/min (95% CI -1411.0, -531.0)], but did not affect distal absolute sodium reabsorption [-9.2 mmol/min (95% CI -402.0, 383.6)]. Conclusions: Dapagliflozin and eplerenone exert different effects on markers of glomerular and tubular function supporting the hypothesis that different mechanistic pathways may account for their kidney protective effects.

  • Thumbnail Image
    Publication
    UCH
    Finerenone: a potential treatment for patients with Chronic Kidney Disease and Type 2 Diabetes Mellitus2021-11

    Type 2 diabetes mellitus (T2DM) affects an estimated 463 million people worldwide, equivalent to 1 in 11 adults. Moreover, the rapid growth of this disease has resulted in a high incidence of diabetic kidney disease (DKD), which, together with hypertension, is the main cause of chronic kidney disease (CKD). Hyperglycaemia, low-grade inflammation, altered lipid metabolism and hyperactivation of the renin–angiotensin–aldosterone system (RAAS) seem to be interrelated mechanisms contributing to both T2DM and microvascular complications. The introduction of drugs such as sodium–glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists has improved the ability to slow the progression of DKD, and has also demonstrated benefits in cardiovascular disease. Beyond the effects of these novel antidiabetic drugs, a body of evidence suggests that the overactivation of the mineralocorticoid receptor also contributes to CKD progression. Moreover, new and ongoing trials have demonstrated that the selective nonsteroidal mineralocorticoid receptor antagonist (MRA) finerenone improves the risk of CKD progression and cardiovascular events in patients with CKD and T2DM and optimized RAAS blockade. We review the rationale for the development and use of MRA drugs to slow CKD progression in patients with DKD, as well as other pleiotropic effects, and highlight the warnings associated with these agents.