1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    USP
    Prevention of Teratogenesis in Pregnancies of Obese Rats by Vitamin E Supplementation2021-07-23

    Congenital malformations are a common adverse outcome in pregnancies complicated by pregestational obesity, although the underlying mechanisms are still unrevealed. Our aim was to study the effect of oxidative stress in obesity-induced teratogenesis. Wistar rats were fed a high-fat diet for 13 weeks, with (OE group) or without (O group) vitamin E supplementation. Then, rats were mated and sacrificed at day 11.5 of gestation. Embryos from O dams presented a 25.9 3.5% rate of malformations (vs. 8.7 3.4% in C rats), which was reduced in the OE group (11.5 2.3%). Pregestational obesity induced hepatic protein and DNA oxidation and a decline in antioxidant enzymes. Importantly, glutathione content was also decreased, limiting the availability of this antioxidant in the embryos. Vitamin E supplementation efficiently maintained glutathione levels in the obese mothers, which could be used in their embryos to prevent oxidation-induced malformations. To test the effect of decreasing glutathione levels alone in a cell culture model of neuroepithelium, murine embryonic stem cells (ESC) were induced to form neuronal precursors and glutathione synthesis was inhibited with the gamma–glutamylcysteine synthesis inhibitor, buthionine sulfoximine (BSO). BSO inhibited the expression of Pax3, a gene required for neural tube closure that is also inhibited by oxidative stress. Taken together, our data indicate that obesity causes malformations through the depletion of maternal glutathione, thereby decreasing glutathione-dependent free radical scavenging in embryos, which can be prevented by vitamin E supplementation.

  • Thumbnail Image
    Publication
    USP
    Antioxidants and Oxidative Stress :Focus in Obese Pregnancies2018-11-06

    The prevalence of obesity in women of childbearing age around the globe has dramatically increased in the last decades. Obesity is characterized by a low-state chronic inflammation, metabolism impairment and oxidative stress, among other pathological changes. Getting pregnant in this situation involves that gestation will occur in an unhealthy environment, that can potentially jeopardize both maternal and fetal health. In this review, we analyze the role of maternal obesity-induced oxidative stress as a risk factor to develop adverse outcomes during gestation, including reduced fertility, spontaneous abortion, teratogenesis, preeclampsia, and intrauterine growth restriction. Evidences of macromolecule oxidation increase in reactive oxygen species generation and antioxidant defense alterations are commonly described in maternal and fetal tissues. Thus, antioxidant supplementation become an interesting prophylactic and therapeutic tool, that yields positive results in cellular, and animal models. However, the results from most meta-analysis studying the effect of these therapies in complicated gestations in humans are not really encouraging. It is still to be analyzed whether these therapies could work if applied to cohorts of patients at a high risk, such as those with low concentration of antioxidants or obese pregnant women.

  • Thumbnail Image
    Publication
    USP
    Teratogenic effects of diabetes mellitus in the rat : prevention by vitamin E.1996-09-19T15:40:20Z

    We wanted to determine whether administration of vitamin E could reduce the production of free radicals which could play a role in the teratogenic effects of diabetes mellitus. Diabetes was induced in Wistar rats by the intravenous administration of streptozotocin. The animals were divided into six groups: one with no supplement (D) and two, supplemented during pregnancy either with oral vitamin E (150 mg/day) (D + E) or with a placebo (safflower oil) (D + 0). Three other groups were kept under the same conditions, but were treated with insulin: D + I, D + I + E and D + I + 0. There were three groups of matched controls: C, C + E and C + 0. All animals were killed on day 11.5 of pregnancy. In C animals the percentages of reabsorptions and malformations were 1.3 and 2 %, respectively, comapred with 23.6, 24.3, 6.2 and 13.2 %, respectively in D and D + I groups. The crown-rump length, number of somites, and protein and DNA content were: higher in C animals than in the diabetic rats, independent of insulin treatment. When vitamin E was administered no changes in these parameters were observed in C and D + I animals; however, in the D mothers it reduced the rate of embryo malformations to 4.6 % and increased the crown-rump length and the number of somites. However, vitamin E did not modify the protein and DNA content and the percentage of reabsorptions. In conclusion, administration of vitamin E to diabetic animals decreases the rate of embryo malformations and increases their size and maturation, supporting a role for free radicals in the teratogenic effects of diabetes.