1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    UCH
    Long-term implications of feed energy source in different genetic types of reproductive rabbit females. II, Immunologic status2018-09-01

    Genetic selection and nutrition management have played a central role in the development of commercial rabbitry industry over the last few decades, being able to affect productive and immunological traits of the animals. However, the implication of different energy sources in animals from diverse genetic lines achieving such evolutionary success remains still unknown. Therefore, in this work, 203 female rabbits housed and bred in the same conditions were used from their first artificial insemination until their fifth weaning. The animals belonged to three different genetic types diverging greatly on breeding goals (H line, hyper-prolific (n=66); LP line, robust (n=67) and R line, selected for growth rate (n=67), and were assigned to two experimental diets, promoting major differences in energy source (cereal starch or animal fat)). The aims of this work were to: (1) characterize and describe blood leucocyte populations of three lines of rabbit does in different physiological stages during their reproductive period: first artificial insemination, first weaning, second parturition and fifth weaning; and (2) study the possible influence of two different experimental diets on the leucocyte populations in peripheral blood. Flow cytometry analyses were performed on blood samples taken from females at each different sampling stade. Lymphocyte populations at both weanings were characterized by significantly lower counts of total, CD5+ and CD8+ lymphocytes (–19.8, –21.7 and –44.6%; P<0.05), and higher counts of monocytes and granulocytes (+49.2 and +26.2%; P<0.05) than in the other stages. Females had higher blood counts of lymphocytes B, CD8+ and CD25+ and lower counts of CD4+ at first than at fifth weaning (+55.6, +85.8, +57.5, –14.5%; P<0.05). G/L ratio was higher at both weanings (P<0.05), and CD4+/CD8+ ratio increased progressively from the 1AI to the 5 W (P<0.001). Regarding the effect of genetic type in blood leucocyte counts, LP animals presented the highest counts for total, B, CD5+ and CD8+ lymphocytes (+16.7, +31.8, +24.5 and +38.7; P<0.05), but R rabbits showed the highest counts for monocytes and granulocytes (+25.3 and +27.6; P<0.05). The type of diet given during the reproductive life did not affect the leucocyte population counts. These results indicate that there are detectable variations in the leucocyte profile depending on the reproductive stage of the animal (parturition, weaning or none of them). Moreover, foundation for reproductive longevity criteria allows animals to be more capable of adapting to the challenges of the reproductive cycle from an immunological viewpoint.

  • Thumbnail Image
    Publication
    UCH
    Long-term implications of feed energy source in different genetic types of reproductive rabbit females. I, Resource acquisition and allocation2018-09-01

    To achieve functional but also productive females, we hypothesised that it is possible to modulate acquisition and allocation of animals from different genetic types by varying the main energy source of the diet. To test this hypothesis, we used 203 rabbit females belonging to 3 genetic types: H (n=66), a maternal line characterised by hyper-prolificacy; LP (n=67), a maternal line characterised by functional hyper longevity; R (n=79), a paternal line characterised by growth rate. Females were fed with 2 isoenergetic and isoprotein diets differing in energy source: animal fat (AF) enhancing milk yield; cereal starch (CS) promoting body reserves recovery. Feed intake, weight, perirenal fat thickness (PFT), milk yield and blood traits were controlled during 5 consecutive reproductive cycles. Females fed with CS presented higher PFT (+0.2mm, P<0.05) and those fed AF had higher milk yield (+11.7%, P<0.05). However, the effect of energy source varied with the genetic type and time. For example, R females presented a decrease in PFT at late lactation (􀀐4.3%; P<0.05) significantly higher than that observed for H and LP lines (on av. 􀀐0.1%; P>0.05), particularly for those fed with AF. Moreover, LP females fed with AF progressively increased PFT across the RC, whereas those fed with CS increased PFT during early lactation (+7.3%; P<0.05), but partially mobilised it during late lactation (-2.8%; P<0.05). Independently of the diet offered, LP females reached weaning with similar PFT. H females fed with either of the two diets followed a similar trajectory throughout the RC. For milk yield, the effect of energy source was almost constant during the whole experiment, except for the first reproductive cycle of females from the maternal lines (H and LP). These females yielded +34.1% (P<0.05) when fed with CS during this period. Results from this work indicate that the resource acquisition capacity and allocation pattern of rabbit females is different for each genetic type. Moreover, it seems that by varying the main energy source of the diet it is possible to modulate acquisition and allocation of resources of the different genetic types. However, the response of each one depends on its priorities over time.

  • Thumbnail Image
    Publication
    UCH
    Long-term implications of feed energy source in different genetic types of reproductive rabbit females. III, Fitness and productivity2018-09-01

    The specialization process associated with genetic selection could be associated with functional disorders, affecting the reproductive success of females (‘fitness’). We hypothesized that by modulating energy acquisition and allocation of females we could balance productivity and reproductive success. To test this hypothesis, we used 203 rabbit females belonging to three genetic types: H (n=66) maternal line specialised in prolificacy, LP (n=67) generalist maternal line, R (n=70) paternal line specialised in growth rate. We fed each genetic type with two diets specifically designed to promote milk yield (AF) or body reserves recovery (CS). We controlled females between their first and fifth reproductive cycles, recording traits related with productivity and fitness of females. H females fed CS had on average 11.2􀁲0.43 kits with an individual weight of 54􀁲1.2 g at birth and 525􀁲11 g at weaning. Their conception rate when multiparous was 44% and their survival rate at the end of the experiment 30%. When they were fed AF, the individual weight of kits was 3.8 g heavier (P<0.05) at birth and 38 g heavier at weaning (P<0.05), the conception rate when multiparous increased 23 percentage points (P<0.05) and the survival rate at the end of the experiment 25 percentage points (P<0.05). LP females fed CS had on average 10.8􀁲0.43 kits with an individual weight of 52􀁲1.2 g at birth and 578􀁲11 g at weaning. Their conception rate when multiparous was 79% and their survival rate at the end of the experiment 75%. When they were fed AF, it only increased individual weight of kits at weaning (+39 g; P<0.05). R females fed CS had on average 8.4􀁲0.43 kits with an individual weight of 60􀁲1.2 g at birth and 568􀁲11 g at weaning. Their conception rate when multiparous was 60% and their survival rate at the end of the experiment 37%. When they were fed AF, they presented 1.4 kits less at birth (P<0.05) but heavier at birth (+4.9 g; P<0.05) and at weaning (+37 g; P<0.05). Therefore, we observed that genetic types prioritised different fitness 3 components and that diets could affected them. In this sense, seems that more specialised genetic types, were more sensitive to diets than the more generalist type.