1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Publication
    UCH
    Prevalence and factors related to "Leishmania infantum" infection in healthy horses ("Equus caballus") from Eastern Spain2023-09-11

    Leishmaniosis is a zoonosis caused by Leishmania spp., an intracellular protozoan parasite. This parasite is transmitted by sandflies, and the disease is endemic in the Mediterranean basin. In recent years, the number of species which could be a reservoir of the parasite is increased. One of the most relevant species is the horse, due to their contact with humans and ability to control the disease, thus being a possible silent reservoir. In this study, we have analyzed the prevalence and factors related to L. infantum infection in healthy horses in the Mediterranean region. Epidemiological data and serum samples were obtained from 167 apparently healthy horses, and the presence of L. infantum was evaluated via the ELISA method and real-time PCR. The results show 27.5% of prevalence and that the main factors related to infection are equine breed, morphotype, outdoor living, use, and season. In conclusion, the prevalence of L. infantum infection in apparently healthy horses from eastern Spain (Mediterranean basin) is elevated. To control this zoonosis, it would be advisable to carry out more studies on this and other species that could be silent reservoirs of the parasite, as well as carry out measures such as the use of repellents on a regular basis.

  • Thumbnail Image
    Publication
    UCH
    Occurrence, molecular identification, and "in vitro" features of emerging zoonotic parasites in Mediterranean marine fish2024-01-17

    El pescado tiene una relevancia fundamental en la dieta de los seres humanos, sin embargo, su consumo no está exento de riesgos, entre ellos, la presencia de parásitos responsables de enfermedades zoonósicas. Los peces marinos pueden albergar parásitos unicelulares emergentes, de origen terrestre y transmisión hídrica (EWUP, siglas en inglés), sin estar necesariamente infectados. Por otro lado, los peces marinos son verdaderos hospedadores de parásitos de reconocida importancia en salud pública, destacando el nematodo Anisakis pegreffii en el Mediterráneo, causante de la anisakiosis. La primera parte de esta tesis doctoral se enfoca en la detección y caracterización molecular (PCR y metabarcoding) de algunos EWUP de importancia en peces de consumo (cultivados y silvestres), de la costa española del Mediterráneo. Se detectaron especies y subtipos zoonósicos de Cryptosporidium, Blastocystis y microsporidios, aunque en prevalencias muy bajas, sugiriendo un limitado riesgo de transmisión por consumo de pescado procedente de las poblaciones estudiadas. En la segunda parte, se propone un protocolo in vitro para el desarrollo larvario temprano de A. pegreffii, complementado con un estudio ultraestructural. Esta herramienta, como parte del ciclo biológico in vitro de A. pegreffii, puede ser muy útil para la obtención de material biológico destinado a futuros estudios de patogenicidad, diagnóstico o terapéutica.

  • Thumbnail Image
    Publication
    UCH
    Fasciolosis hepática en ganado equino: a propósito de un caso2023-09

    En este artículo se describe el hallazgo de huevos de "Fasciola hepatica" en una muestra de heces de ganado mular, como consecuencia del programa de desparasitación anual que tiene establecido las distintas ADSs. La importancia de este hallazgo radica en el escaso número de équidos que se presentan como hospedadores definitivos de este parásito, pudiendo dar lugar a enfermedad hepática difícil de diagnosticar.

  • Thumbnail Image
    Publication
    UCH
    Detection of equine herpesvirus-1 (EHV-1) in urine samplesduring outbreaks of equine herpesvirus myeloencephalopathy2023-09-12

    Background: Real-time PCR is the diagnostic technique of choice for the diagnosis and control of equine herpesvirus-1 (EHV-1) in an outbreak setting. The presence of EHV-1 in nasal swabs (NS), whole blood, brain and spinal cord samples has been extensively described; however, there are no reports on the excretion of EHV-1 in urine, its DNA detection patterns, and the role of urine in viral spread during an outbreak. Objectives: To determine the presence of EHV-1 DNA in urine during natural infection and to compare the DNA detection patterns of EHV-1 in urine, buffy coat (BC) and NS. Study design: Descriptive study of natural infection. Methods: Urine and whole blood/NS samples were collected at different time points during the hospitalisation of 21 horses involved in two EHV-1 myeloencephalopathy outbreaks in 2021 and 2023 in Spain. Quantitative real-time PCR was performed to compare the viral DNA load between BC-urine samples in 2021 and NS-urine samples in 2023. Sex, age, breed, presence of neurological signs, EHV-1 vaccination status and treatment data were recorded for all horses. Results: A total of 18 hospitalised horses during the 2021 and 2023 outbreaks were positive for EHV-1, and viral DNA was detected in urine samples from a total of 11 horses in both outbreaks. Compared with BC samples, DNA presence was detected in urine samples for longer duration and with slightly higher concentration; however, compared with NS, detection of EHV-1 in urine was similar in duration with lower DNA concentrations. Main limitations: Limited sample size, different sampling times and protocols (BC vs. NS) in two natural infection outbreak settings. Conclusions: EHV-1 was detected in the urine from naturally infected horses. Urine should be considered as complimentary to blood and NS in diagnosis of EHV-1 infection.

  • Thumbnail Image
    Publication
    UCH
    Fecundity, in vitro early larval development and karyotype of the zoonotic nematode "Anisakis pegreffii"2023-11-12

    The in vitro life cycle of zoonotic helminths is an essential tool for -omic translational studies focused on disease control and treatment. Anisakiosis is an emerging zoonosis contracted by the ingestion of raw or undercooked fish infected with the third stage larvae (L3) of two sibling species Anisakis simplex sensu stricto (s.s.) and Anisakis pegreffii, the latter being the predominant species in the Mediterranean basin. Recently, in vitro culture of A. pegreffii has been developed to enable fast and large-scale production of fertile adults. However, the conditions for larval development from hatching to infective L3 were not fulfilled to complete the cycle. Herein, we used a Drosophila medium supplemented with chicken serum and adjusted different osmolarities to maintain the culture of L3 hatched from eggs for up to 17 weeks. The highest survival rate was observed in the medium with the highest osmolarities, which also allowed the highest larval exsheathment rate. Key morphological features of embryogenesis and postembryogenesis studied by transmission electron microscopy revealed that the excretory gland cell is differentiated already up to 48 h post-hatching. Extracellular vesicles and cell-free mitochondria are discharged between the two cuticle sheets of the second stage larvae (L2). Contemporarly cultivated, two populations of adult A. simplex s.s. and A. pegreffii reached an average production of 29,914.05 (± 27,629.36) and 24,370.96 (± 12,564.86) eggs/day/female, respectively. The chromosome spreads of A. pegreffii obtained from mature gonads suggests a diploid karyotype formula of 2n = 18. The development of a reliable protocol for the in vitro culture of a polyxenous nematode such as Anisakis spp. will serve to screen for much needed novel drug targets, but also to study the intricated and unknown ecological and physiological traits of these trophically transmitted marine nematodes.

  • Thumbnail Image
    Publication
    UCH
    Microsporidia in commercially harvested marine fish: a potential health risk for consumers2023-08-19

    Microsporidia are widely spread obligate intracellular fungal pathogens from vertebrate and invertebrate organisms, mainly transmitted by contaminated food and water. This study aims to detect the presence of major human-pathogenic microsporidia, i.e., Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon hellem, and Encephalitozoon cuniculi, in the gastrointestinal tract of commercially harvested marine fish from Mediterranean coast of the Comunidad Valenciana, Eastern Spain. A total of 251 fish, 138 farmed fish and 113 wild fish from commercial fishing were tested by SYBR Green real-time PCR, enabling the simultaneous detection of the four targeted species. E. intestinalis/hellem was found in 1.45% of farmed fish and 7.96% of wild fish, while Enterocytozoonidae was detected in 2.90% and 18.58% of farmed and wild fish, respectively. E. cuniculi was not detected in any of the analyzed specimens. To the authors’ knowledge, this is the first report of E. intestinalis/hellem in fish, particularly in marine fish. Although the role of fish in these species’ epidemiology remains unknown, this finding points out a potential public health risk linked to fish consumption. Further studies are necessary to characterize these microsporidia in fish hosts better and to elucidate their epidemiological role.

  • Thumbnail Image
    Publication
    UCH
    Human and environmental factors driving "Toxoplasma gondii" prevalence in wild boar ("Sus scrofa")2021-12

    As one of the most relevant foodborne diseases, it is essential to know the factors related to the transmission, persistence and prevalence of Toxoplasma gondii infection. Eurasian wild boar (Sus scrofa) might play a relevant role in T.gondii's life cycle. This species is the most consumed big game animal in Spain and may act as a source of infection if the meat is eaten raw or undercooked or due to cross-contaminations. Additionally, wild boar can act as an excellent bioindicator of T.gondii circulation in the ecosystem, because its natural behaviour leads to exposure to oocysts from the soil when rooting and tissular bradyzoites when scavenging. A total of 1003 wild boar were sampled from 2010 to 2017 in Mediterranean Spain. Blood samples were tested with an indirect ELISA test giving a total of 14.1% (95% confidence interval 12.0–16.4%) positive results. The prevalence was not homogeneous in neither the animals nor the sampled districts. Significant differences were found regarding age, climatic conditions and human space occupancy. Human population aggregation, assessed by Demangeon's index, was identified as an influential factor in T.gondii infection risk. This multiple approach allows us to evaluate local risks for human and environmental contamination.