1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    USP
    Efectos teratogénicos de la diabetes: prevención con la administración de antioxidantes.2011-09-19T15:40:19Z

    Nuestros resultados permiten sugerir que la administración de antioxidantes capaces de reducir la producción de radicales libres, podrían desempeñar un importante papel en la prevención de los efectos teratogénicos asociados a la diabetes. Tal vez lo más relevante es que los antioxidantes actuarían independientemente del grado de control metabólico alcanzado, por lo que sus efectos podrían añadirse a los conseguidos al obtener un mejor control metabólico.

  • Thumbnail Image
    Publication
    USP
    Effect of different doses of vitamin E on the incidence of malformations in pregnant diabetic rats.2003-09-19T15:39:46Z

    Background/Aims: Previously we have shown that administration of 150 mg of vitamin E (·-tocopherol) per day to rats having diabetes decreases the rate of embryo malformations and increases their maturation and size. The present study was addressed to determine the effects of different doses of vitamin E upon these parameters. Methods: Female rats were made diabetic (D) with streptozotocin, and from day 0 of gestation they were treated daily with 25 (D+25), 50 (D+50), 100 (D+100), 150 (D+150), and 500 (D+500) mg of vitamin E administered orally and were compared with control (C) animals. Results: On day 11.5 of gestation, crown-rump length, somite number, and protein and DNA levels were lower in D than in C embryos. Crown-rump length and somite number increased with 100 mg or higher doses of vitamin E, although the values observed in C embryos were not reached. The proportions of reabsorption and malformations were 24.7 and 50%, respectively, in D rats, and in the rats supplemented with vitamin E they decreased to 22.7 and 19% in D+25, 16.4 and 21.3% in D+50, 16.2 and 12% in D+100, 12.9 and 13.9% in D+150, and to 43.9 and 10.8% in D+500 rats, whereas the values were 6.8 and 4.9% in C animals. Conclusions: Administration of vitamin E to D rats decreases the rate of embryo malformations, dependent on the dose administered. However, high doses have a negative effect in the conceptus, as shown by the increased rate of reabsorptions in the D+500 group.

  • Thumbnail Image
    Publication
    USP
    Oxidative damage in pregnant diabetic rats and their embryos.2000-09-19T15:39:35Z

    Free radical mechanisms may be involved in the teratogenesis of diabetes. The contribution of oxidative stress in diabetic complications was investigated from the standpoint of oxidative damage to DNA, lipids, and proteins in the livers and embryos of pregnant diabetic rats. Diabetes was induced prior to pregnancy by the administration of streptozotocin (45 mg/kg). Two groups of diabetic rats were studied, one without any supplementation (D) and another treated during pregnancy with vitamin E (150 mg/d by gavage) (D + E). A control group was also included (C). The percentage of malformations in Drats were 44%, higher than the values observed in C (7%) and D + E (12%) animals. D Group rats showed a higher concentration of thiobarbituric acid reactive substances in the mother's liver, however, treatment with vitamin E decreased this by 58%. The levels of protein carbonyls in the liver of C, D, and D + E groups were similar. The "total levels" of the DNA adducts measured, both in liver and embryos C groups were similar to the D groups. Treatment of D groups with vitamin E reduced the levels by 17% in the liver and by 25% in the embryos. In terms of the "total levels" of DNA adducts, the embryos in diabetic pregnancy appear to be under less oxidative stress when compared with the livers of their mothers. Graziewicz et al. (Free Radical Biology & Medicine, 28:75-83, 1999) suggested "that Fapyadenine is a toxic lesion that moderately arrests DNA synthesis depending on the neighboring nucleotide sequence and interactions with the active site of DNA polymerase." Thus the increased levels ofFapyadenine in the diabetic livers and embryos may similarly arrest DNA polymerase, and in the case of this occurring in the embryos, contribute to the congenital malformations. It is now critical to probe the molecular mechanisms of the oxidative stress-associated development of diabetic congenital malformations.