1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    UCH
    Milk component ratios and their associations with energy balance indicators and serum calcium concentration in early-lactation spring-calving pasture-based dairy cows2024-09-07

    Indirect assessment of metabolic status using milk samples provides a non-invasive and objective tool for cow-level health monitoring. Milk fat-to-protein ratio (FPR) has been commonly evaluated as an indirect measure for negative energy balance (EB) in confined dairy cows. However, milk component ratios have not been explored for their association with pasture-based cows' metabolic status. The objectives of this observational study were to 1) describe milk component ratios from 0 to 45 d postpartum, 2) evaluate the associations between milk component ratios [FPR, fat-to-lactose (FLR), protein-to-lactose (PLR)] and indicators of EB (serum β-hydroxybutyrate (BHB) concentration at 5–45 d postpartum and body condition score (BCS) change during the transition period), and 3) evaluate the associations between milk component ratios and serum Ca concentration 0–4 d postpartum in spring-calving dairy cows from pasture-based commercial farms. Milk component ratios were determined on samples collected before AM or PM milkings from 548 cows at 0–45 d postpartum (n = 970). Serum BHB and Ca determinations were performed in blood samples collected at the time of milk sample collection at 5–45 d postpartum (n = 918) and 0–4 d postpartum (n = 50), respectively; and BCS change was calculated using BCS assigned between 29 d prepartum and 45 d postpartum (n = 851). Cows' calving date, parity (1st, 2nd–3rd or ≥ 4th) and breed (Holstein-Friesian or dairy crossbred) information was obtained from the farm records. Data was analyzed by multiple linear regression. Average milk FPR, FLR and PLR were 0.70, 0.53 and 0.72, respectively. Milk FPR linearly increased while milk FLR linearly decreased postpartum both at a rate of 0.004 units per day; milk PLR decreased 0.05 units per day for the first 30 d postpartum and moderately increased afterward. Milk FPR and FLR were 0.71 and 0.52 units lower before AM than PM milking, respectively; while milk PLR was similar before AM and PM milking. Milk FPR and FLR were 0.07 to 0.10 units higher for 2nd–3rd compared with 1st and ≥ 4th parity cows. Milk PLR was 0.03 units greater for ≥ 4th compared with 2nd–3rd and 1st parity cows. Further, crossbred cows had 0.07, 0.08 and 0.03 higher milk FPR, FLR and PLR than Holstein-Friesian cows, respectively. Moderate to high P-values along with moderate to small estimated slopes and wide 95% confidence intervals were observed for the associations between milk component ratios and indicators of EB. A positive linear association was observed between milk FPR and serum Ca concentration within 4 d postpartum; milk FPR increased 0.31 units per each mmol/L increase in serum Ca concentration. Cows with low serum Ca concentration within 4 d postpartum had 0.27 units lower milk FPR compared with cows at or above the threshold (2.12 mmol/L), and tended to have 0.15 units lower milk FPR compared with cows at or above the threshold (2.00 mmol/L). In conclusion, further research is needed to reach conclusions on the association between milk component ratios determined before milking and EB indicators. The potential of milk FPR for monitoring blood Ca status warrants further investigation in early-lactation pasture-based dairy cows.

  • Thumbnail Image
    Publication
    UCH
    Treatment practices after calving-related events on 45 dairy farms in California2021-11-23

    Retained fetal membranes (RFM), dystocia, and twinning are common postpartum events that increase the risk of metritis, impair reproductive performance, and contribute to antimicrobial use on dairies. The overall objective of this study was to describe treatment decisions after RFM, severe dystocia (cesarean section and fetotomy), nonsevere dystocia (nonmechanical and mechanical assistance to extract the calf), and twinning. A total of 44 dairies from California’s San Joaquin Valley (39 Holstein and 6 Jersey or crossbreed herds) with 450 to 9,500 lactating cows were enrolled in this study. Researchers visited each dairy once to observe cow-side fresh cow health evaluations and to interview health evaluators and maternity workers, using a standardized survey tool. The survey included questions about antimicrobial (class, dose, and duration) and nonantimicrobial therapies for calving-related events. Antimicrobial therapy was used in all 44 dairies to treat RFM at 24 (n = 23), 48 (n = 10), or 72 h (n = 5) after calving, or when puerperal metritis signs were observed (n = 6). Antimicrobial therapy was used after all severe dystocia cases, and after nonsevere dystocia (n = 27) and twinning (n = 15). Ceftiofur products were the most common antimicrobial class; they were used to treat RFM cases (n = 29), nonsevere dystocia (n = 13), and twinning (n = 10). Supportive therapy for calving-related events included nonantimicrobial intrauterine treatments, nonsteroidal antiinflammatory drugs, oxytocin, i.v. calcium, or oral drenches. Our study highlights opportunities to reduce extra-label use of antimicrobials in postpartum cows affected with RFM, and the need for education and outreach efforts on judicious use of antimicrobials. Furthermore, antimicrobial treatment choices differed largely across dairies, indicating a need to reach consensus and promote standardized practices within the industry.