1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- Unbalanced redox status network as an early pathological event in congenital cataracts
2023-10 The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.
- Repurposing a cyclin-dependent Kinase 1 (CDK1) mitotic regulatory network to complete terminal differentiation in lens fiber cells
2023-02 Purpose: During lens fiber cell differentiation, organelles are removed in an ordered manner to ensure lens clarity. A critical step in this process is removal of the cell nucleus, but the mechanisms by which this occurs are unclear. In this study, we investigate the role of a cyclin-dependent kinase 1 (CDK1) regulatory loop in controlling lens fiber cell denucleation (LFCD). Methods: We examined lens differentiation histologically in two different vertebrate models. An embryonic chick lens culture system was used to test the role of CDK1, cell division cycle 25 (CDC25), WEE1, and PP2A in LFCD. Additionally, we used three mouse models that express high levels of the CDK inhibitor p27 to test whether increased p27 levels affect LFCD. Results: Using chick lens organ cultures, small-molecule inhibitors of CDK1 and CDC25 inhibit LFCD, while inhibiting the CDK1 inhibitory kinase WEE1 potentiates LFCD. Additionally, treatment with an inhibitor of PP2A, which indirectly inhibits CDK1 activity, also increased LFCD. Three different mouse models that express increased levels of p27 through different mechanisms show impaired LFCD. Conclusions: Here we define a conserved nonmitotic role for CDK1 and its upstream regulators in controlling LFCD. We find that CDK1 functionally interacts with WEE1, a nuclear kinase that inhibits CDK1 activity, and CDC25 activating phosphatases in cells where CDK1 activity must be exquisitely regulated to allow for LFCD. We also provide genetic evidence in multiple in vivo models that p27, a CDK1 inhibitor, inhibits lens growth and LFCD.
- Glyoxalase system as a therapeutic target against diabetic retinopathy
2020-10-30 Hyperglycemia, a defining characteristic of diabetes, combined with oxidative stress, results in the formation of advanced glycation end products (AGEs). AGEs are toxic compounds that have adverse e ects on many tissues including the retina and lens. AGEs promote the formation of reactive oxygen species (ROS), which, in turn, boost the production of AGEs, resulting in positive feedback loops, a vicious cycle that compromises tissue fitness. Oxidative stress and the accumulation of AGEs are etiologically associated with the pathogenesis of multiple diseases including diabetic retinopathy (DR). DR is a devastating microvascular complication of diabetes mellitus and the leading cause of blindness in working-age adults. The onset and development of DR is multifactorial. Lowering AGEs accumulation may represent a potential therapeutic approach to slow this sight-threatening diabetic complication. To set DR in a physiological context, in this review we first describe relations between oxidative stress, formation of AGEs, and aging in several tissues of the eye, each of which is associated with a major age-related eye pathology. We summarize mechanisms of AGEs generation and anti-AGEs detoxifying systems. We specifically feature the potential of the glyoxalase system in the retina in the prevention of AGEs-associated damage linked to DR. We provide a comparative analysis of glyoxalase activity in di erent tissues from wild-type mice, supporting a major role for the glyoxalase system in the detoxification of AGEs in the retina, and present the manipulation of this system as a therapeutic strategy to prevent the onset of DR.