1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- AT2R stimulation with C21 prevents arterial stiffening and endothelial dysfunction in the abdominal aorta from mice fed a high-fat diet
2021-12-17 The aim of this study was to evaluate the effect of Compound 21 (C21), a selective AT2R agonist, on the prevention of endothelial dysfunction, extracellular matrix (ECM) remodeling and arterial stiffness associated with diet-induced obesity (DIO). 5-week-old male C57BL/6J mice were fed a standard (Chow) or high-fat diet (HF) for 6 weeks.Half of the animals of each group were simultaneously treated with C21 (1mg/kg/day, in the drinking water), generating 4 groups: Chow C, Chow C21, HF C, HF C21. Vascular function and mechanical properties were determined in the abdominal aorta. To evaluate ECM remodeling, collagen deposition, activity of metalloproteinases (MMP) 2 and 9 and TGF-1 concentration were analyzed in the plasma. Abdominal aortas from HF C mice showed endothelial dysfunction as well as enhanced contractile but reduced relaxant responses to Ang II.This effect was abrogated with C21 treatment by preserving NO availability. A left-shift inthe tension-stretch relationship, paralleled by an augmented β-index (marker of intrinsic arterial stiffness), and enhanced collagen deposition and MMP-2/-9 activities were also detected in HF mice. However, when treated with C21, HF mice exhibited lower TGF-1 levels in abdominal aortas together with reduced MMP activities and collagen deposition compared with HF C mice. In conclusion, these data demonstrate that AT2R stimulation by C21 in obesity preserves NO availability and prevents unhealthy vascular remodeling, thus protecting the abdominal aorta in HF mice against the development of endothelial dysfunction, ECM remodeling and arterial stiffness.
- Remodeling of energy metabolism and absence of electrophysiological changes in the heart of obese hyperleptinemic mice. New insights into the pleiotropic role of leptin
2013-11-15 Dietary treatment with high-fat diets (HFD) triggeenrs diabetes and hyperleptinemia, con- comitantly with a partial state of leptin resistance that affects hepatic and adipose tissue but not the heart. In this context, characterized by widespread steatosis, cardiac lipid con- tent remains unchanged. As previously reported, HFD-evoked hyperleptinemia could be a pivotal element contributing to increase fatty-acid (FA) metabolism in the heart and to prevent cardiac steatosis. This metabolic adaptation might theoretically reduce energy efficiency in cardiomyocytes and lead to cardiac electrophysiological remodeling. There- fore the aim of the current study has been to investigate the impact of long-term HFD on cardiac metabolism and electrophysiological properties of the principal ionic currents responsible of the action potential duration in mouse cardiomyocytes. Male C57BL/6J mice were fed a control (10 kcal% from fat) or HFD (45 kcal% from fat) during 32 weeks. Quantification of enzymatic activities regulating mitochondrial uptake of pyruvate and FA showed an increase of both carnitine-palmitoyltransferase and citrate synthase activities together with a decrease of lactate dehydrogenase and pyruvate dehydrogenase activities. Increased expression of uncoupling protein-3, Mn-, and Cu/Zn-superoxide dismutases and catalase were also detected. Total glutathione/oxidized glutathione ratios were unaffected by HFD. These data suggest that HFD triggers adaptive mechanisms aimed at facilitating FA catabolism, and preventing oxidative stress. All these changes did not affect the dura- tion of action potentials in cardiomyocytes and only slightly modified electrocardiographic parameters.
- Beneficial Effect of Bariatric Surgery on Abnormal MMP-9 and AMPK Activities Potential Markers of Obesity-Related CV Risk
2019-05-08 Bariatric surgery (BS) results in sustained weight loss and may reverse inflammation, metabolic alterations, extracellular matrix remodeling and arterial stiffness. We hypothesize that increased stiffening in omental arteries from obese patients might be associated with an increase in MMP activity and a decrease in p-AMPK, together with systemic oxidative stress and inflammation. Moreover, BS could contribute to reversing these alterations. This study was conducted with 38 patients of Caucasian origin: 31 adult patients with morbid obesity (9 men and 22 women; mean age 46 years and BMI = 42.7 1.0 kg/m2) and 7 non-obese subjects (7 women; mean age 45 years and BMI = 22.7 0.6 kg/m2). Seventeen obese patients were studied before and 12 months after BS. The stiffness index b, an index of intrinsic arterial stiffness, was determined in omental arteries and was significantly higher in obese patients. Levels of phosphorylated AMPK (p-AMPKThr172) and SIRT-1 were significantly lower in peripheral blood mononuclear cells (PBMCs) from obese patients than those from non-obese patients (p < 0.05) and were normalized after BS. Total and active MMP-9 activities, LDH, protein carbonyls and uric acid were higher in obese patients and reduced by BS. Moreover, there was a correlation between plasmatic LDH levels and the stiffness index b. BS has a beneficial effect on abnormal MMP-9, LDH and AMPK activities that might be associated with the development of arterial stiffness in obese patients. Since these parameters are easily measured in blood samples, they could constitute potential biomarkers of cardiovascular risk in morbid obesity
- Caloric restriction induces H2O2 formation as a trigger of AMPK-eNOS-NO pathway in obese rats: Role for CAMKII
2019-05-13 Caloric restriction (CR) improves endothelial function through the upregulation of adenosine monophosphateactivated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Moreover, hydrogen peroxide (H2O2) is upregulated in yeast subjected to CR. Our aim was to assess if mild short-term CR increases vascular H2O2 formation as a link with AMPK and eNOS activation. Twelve-week old Zucker obese (fa/fa) and control Zucker lean male rats were fed a standard chow either ad libitum (AL, n=10) or with a 20% CR (CR, n=10) for two weeks. CR significantly improved relaxation to ACh in fa/fa rats because of an enhanced endogenous production of H2O2 in aortic rings (H2O2 levels fa/faAL=0.5±0.05 nmol/mg vs. H2O2 levels fa/faCR=0.76±0.07 nmol/mg protein; p<0.05). Expression of mitochondrial superoxide dismutase (Mn-SOD) and total SOD activity were increased in aorta from fa/fa animals after CR. In cultured aortic endothelial cells, serum deprivation or 2-deoxy-D-glucose induced a significant increase in: i) superoxide anion and H2O2 levels, ii) p-AMPK/AMPK and p-eNOS/eNOS expression and iii) nitric oxide levels. This effect was reduced by catalase and strongly inhibited by Ca2+/calmodulin-dependent kinase II (CamkII) silencing. In conclusion, we propose that mild short-term CR might be a trigger of mechanisms aimed at protecting the vascular wall by the increase of H2O2, which then activates AMPK and nitric oxide release, thus improving endothelium-dependent relaxation. In addition, we demonstrate that CAMKII plays a key role in mediating CRinduced AMPK activation through H2O2 increase.
- Beneficial effects of murtilla extract and madecassic acid on insulin sensitivity and endothelial function in a model of diet-induced obesity
2019-01-24 Infusions of murtilla leaves exhibit antioxidant, analgesic, and anti-inflammatory properties. Several compounds that are structurally similar to madecassic acid (MA), a component of murtilla leaf extract (ethyl acetate extract, EAE), have been shown to inhibit protein tyrosine phosphatase 1B (PTP1P). The aim of this study was to evaluate if EAE and two compounds identified in EAE (MA and myricetin [MYR]) could have a beneficial effect on systemic and vascular insulin sensitivity and endothelial function in a model of diet-induced obesity. Experiments were performed in 5-week-old male C57BL6J mice fed with a standard (LF) or a very high-fat diet (HF) for 4 weeks and treated with EAE, MA, MYR, or the vehicle as control (C). EAE significantly inhibited PTP1B. EAE and MA, but not MYR, significantly improved systemic insulin sensitivity in HF mice and vascular relaxation to Ach in aorta segments, due to a significant increase of eNOS phosphorylation and enhanced nitric oxide availability. EAE, MA, and MYR also accounted for increased relaxant responses to insulin in HF mice, thus evidencing that the treatments significantly improved aortic insulin sensitivity. This study shows for the first time that EAE and MA could constitute interesting candidates for treating insulin resistance and endothelial dysfunction associated with obesity.
- Impact of caloric restriction on AMPK and endoplasmic reticulum stress in peripheral tissues and circulating peripheral blood mononuclear cells from Zucker rats
2020-01-28 The activation of endoplasmic reticulum (ER) stress and a reduction of AMP-dependent protein kinase (AMPK) phosphorylation have been described in obesity. We hypothesize that a moderate caloric restriction (CR) might contribute to reducing ER stress and increasing AMPK phosphorylation in peripheral tissues from genetically obese Zucker fa/fa rats and in peripheral blood mononuclear cells (PBMCs). Zucker Lean and Zucker fa/fa rats were fed with chow diet either ad libitum (AL) (C, as controls) or 80% of AL (CR) for 2 weeks, giving rise to four experimental groups: Lean C, Lean CR, fa/fa C and fa/fa CR. CR significantly increased AMPK phosphorylation in the liver, perirenal adipose tissue (PRAT) and PBMCs from fa/fa rats but not in the subcutaneous AT (SCAT), suggesting a reduced response of SCAT to CR. Liver samples of fa/fa rats exhibited an increased mRNA expression of PERK, EIF-2α, XBP-1(s), Chop and caspase 3, which was significantly reduced by CR. PRAT exhibited an overexpression of Edem and PDIA-4 in fa/fa rats, but only PDIA-4 expression was reduced by CR. eIF-2α phosphorylationwas significantly increased in all studied tissues fromfa/fa rats and reduced by CR. A negative correlationwas detected between p-AMPK and p-eIF-2α in the liver, PRAT and PBMCs from fa/fa rats but not in SCAT. This study shows that a moderate CR reduces ER stress and improves AMPK phosphorylation in several peripheral tissues and in circulating PBMCs, suggesting that alterations observed in PBMCs could reflect metabolic alterations associated with obesity. © 2020 Elsevier Inc. All rights reserved.