1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 10 of 14
  • Thumbnail Image
    Publication
    USP
    The impact of high-IgE levels on metabolome and microbiomein experimental allergic enteritis2024-06-23

    Background: The pathological mechanism of the gastrointestinal forms of food aller-gies is less understood in comparison to other clinical phenotypes, such as asthmaand anaphylaxis Importantly, high-IgE levels are a poor prognostic factor in gastroin-testinal allergies.Methods: This study investigated how high-IgE levels influence the development ofintestinal inflammation and the metabolome in allergic enteritis (AE), using IgE knock-in (IgEki) mice expressing high levels of IgE. In addition, correlation of the altered me-tabolome with gut microbiome was analysed.Results: Ovalbumin-sensitized and egg-white diet-fed (OVA/EW) BALB/c WT micedeveloped moderate AE, whereas OVA/EW IgEki mice induced more aggravated in-testinal inflammation with enhanced eosinophil accumulation. Untargeted metabo-lomics detected the increased levels of N-tau-methylhistamine and 2,3-butanediol,and reduced levels of butyric acid in faeces and/or sera of OVA/EW IgEki mice, whichwas accompanied with reduced Clostridium and increased Lactobacillus at the genus level. Non-sensitized and egg-white diet-fed (NC/EW) WT mice did not exhibit anysigns of AE, whereas NC/EW IgEki mice developed marginal degrees of AE. Comparedto NC/EW WT mice, enhanced levels of lysophospholipids, sphinganine and sphin-gosine were detected in serum and faecal samples of NC/EW IgEki mice. In addi-tion, several associations of altered metabolome with gut microbiome—for exampleAkkermansia with lysophosphatidylserine—were detected.Conclusions: Our results suggest that high-IgE levels alter intestinal and systemic levelsof endogenous and microbiota-associated metabolites in experimental AE. This studycontributes to deepening the knowledge of molecular mechanisms for the developmentof AE and provides clues to advance diagnostic and therapeutic strategies of allergicdiseases

  • Thumbnail Image
    Publication
    USP
    Techniques for Phenotyping the Gut Microbiota Metabolome2019

    Omics strategies have triggered a revolution in the understanding of the microorganisms that reside in our body, and their implications in health and disease. For diagnosis and therapeutics, metabolomic fingerprinting is the most powerful approach, since the metabolites represent the actual interplay between humans and microbes. Studying the metabolome requires several new high-throughput analytical techniques and innovative computational methodologies. Herein, we will focus on the metabolomics workflow for gut microbiota analysis, including sampling, laboratory procedures, and available analytical techniques, paying special attention to microbiota isolation and multiplatform complementarity. Finally, we will summarize some applications and implications of gut microbiota metabolites in biomarkers discovery and several therapeutic strategies, such as fecal microbiota transplantation and the usage of prebiotics and probiotics.

  • Thumbnail Image
    Publication
    USP
    Low and high resolution gas chromatography-mass spectrometry for untargeted metabolomics: A tutorial2022-06-01

    GC-MS for untargeted metabolomics is a well-established technique. Small molecules and molecules made volatile by derivatization can be measured and those compounds are key players in main biological pathways. This tutorial provides ready-to-use protocols for GC-MS-based metabolomics, using either the well-known low-resolution approach (GC-Q-MS) with nominal mass or the more recent high-resolution approach (GC-QTOF-MS) with accurate mass, discussing their corresponding strengths and limitations. Analytical procedures are covered for different types of biofluids (plasma/serum, bronchoalveolar lavage, urine, amniotic fluid) tissue samples (brain/hippocampus, optic nerve, lung, kidney, liver, pancreas) and samples obtained from cell cultures (adipocytes, macrophages, Leishmania promastigotes, mitochondria, culture media). Together with the sample preparation and data acquisition, data processing strategies are described specially focused on Agilent equipments, including deconvolution software and database annotation using spectral libraries. Manual curation strategies and quality control are also deemed. Finally, considerations to obtain a semiquantitative value for the metabolites are also described. As a case study, an illustrative example from one of our experiments at CEMBIO Research Centre, is described and findings discussed.

  • Thumbnail Image
    Publication
    USP
    Functional microbiome deficits associated with ageing: Chronological age threshold2019-11-15

    Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well‐defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4‐fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e−8). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2 > .987) and progressively decrease with age (r2 > .948). An age threshold for a 50% decrease is observed ca. 11–31 years old, and a greater than 90% reduction is observed from the ages of 34–54 years. Based on recent investigations linking tryptophan with abundance of indole and other “healthy” longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively “young” age of 34 and, particularly, in the elderly are recommended.

  • Thumbnail Image
    Publication
    USP
    Further Insights into the Gut Microbiota of Cow’s Milk Allergic Infants: Analysis of Microbial Functionality and Its Correlation with Three Fecal Biomarkers2023-05-25

    Cow’s milk allergy (CMA) is one of the most prevalent food allergies in children. Several studies have demonstrated that gut microbiota influences the acquisition of oral tolerance to food antigens at initial stages of life. Changes in the gut microbiota composition and/or functionality (i.e., dysbiosis) have been linked to inadequate immune system regulation and the emergence of pathologies. Moreover, omic sciences have become an essential tool for the analysis of the gut microbiota. On the other hand, the use of fecal biomarkers for the diagnosis of CMA has recently been reviewed, with fecal calprotectin, -1 antitrypsin, and lactoferrin being the most relevant. This study aimed at evaluating functional changes in the gut microbiota in the feces of cow’s milk allergic infants (AI) compared to control infants (CI) by metagenomic shotgun sequencing and at correlating these findings with the levels of fecal biomarkers ( -1 antitrypsin, lactoferrin, and calprotectin) by an integrative approach. We have observed differences between AI and CI groups in terms of fecal protein levels and metagenomic analysis. Our findings suggest that AI have altered glycerophospholipid metabolism as well as higher levels of lactoferrin and calprotectin that could be explained by their allergic status.

  • Thumbnail Image
    Publication
    USP
    Ceramide Composition in Exosomes for Characterization of Glioblastoma Stem-Like Cell Phenotypes2022-02-21

    Glioblastoma (GBM) is one of the most malignant central nervous system tumor types. Comparative analysis of GBM tissues has rendered four major molecular subtypes. From them, two molecular subtypes are mainly found in their glioblastoma cancer stem-like cells (GSCs) derived in vitro: proneural (PN) and mesenchymal (MES) with nodular (MES-N) and semi-nodular (MES-SN) disseminations, which exhibit different metabolic, growth, and malignancy properties. Many studies suggest that cancer cells communicate between them, and the surrounding microenvironment, via exosomes. Identifying molecular markers that allow the specific isolation of GSC-derived exosomes is key in the development of new therapies. However, the differential exosome composition produced by main GSCs remains unknown. The aim of this study was to determine ceramide (Cer) composition, one of the critical lipids in both cells and their cell-derived exosomes, from the main three GSC phenotypes using mass spectrometry-based lipidomics. GSCs from human tissue samples and their cell-derived exosomes were measured using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) in an untargeted analysis. Complete characterization of the ceramide profile, in both cells and cell-derived exosomes from GSC phenotypes, showed differential distributions among them. Results indicate that such differences of ceramide are chain-length dependent. Significant changes for the C16 Cer and C24:1 Cer and their ratio were observed among GSC phenotypes, being different for cells and their cell-derived exosomes.

  • Thumbnail Image
    Publication
    USP
    Flow cytometry has a significant impact on the cellular metabolome2019-01-04

    The characterization of specialized cell subpopulations in a heterogeneous tissue is essential for understanding organ function in health and disease. A popular method of cell isolation is fluorescence-activated cell sorting (FACS) based on probes that bind surface or intracellular markers. In this study, we analyze the impact of FACS on the cell metabolome of mouse peritoneal macrophages. Compared with directly pelleted macrophages, FACS-treated cells had an altered content of metabolites related to the plasma membrane, activating a mechanosensory signaling cascade causing inflammation-like stress. The procedure also triggered alterations related to energy consumption and cell damage. The observed changes mostly derive from the physical impact on cells during their passage through the instrument. These findings provide evidence of FACS-induced biochemical changes, which should be taken into account in the design of robust metabolic assays of cells separated by flow cytometry.

  • Thumbnail Image
    Publication
    USP
    LC-MS metabolomics of polar compounds.2012-09-16

    The metabolome is the complete set of small molecules coming from protein activity (anabolism and catabolism) in living systems. They have a broad range of chemical structures and physico-chemical properties and therefore different analytical methodologies are necessary. Highly polar metabolites, such as sugars and most amino acids are not retained by conventional reversed phase liquid (RP-LC) chromatography columns. Without sufficient retention, coelution may result in identification problems while the detection of compounds by mass spectrometry at low concentrations may also be problematic due to ion suppression. In order to retain compounds based on their hydrophilicity, polar stationary phases and hydrophilic interaction liquid chromatography (HILIC) provide a complementary tool to RP-LC for untargeted comprehensive metabolite fingerprinting. However, robustness of the methods is still limiting their applications. This review focuses on sample pre-treatment, stationary phases, analytical methods and applications for polar compound analysis in biological matrices.