1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- A high-fat diet modifies brain neurotransmitter profile and hippocampal proteome and morphology in an IUGR pig model
2022-08-22 Intrauterine Growth Restriction (IUGR) hinders the correct growth of the fetus during pregnancy due to the lack of oxygen or nutrients. The developing fetus gives priority to brain development (“brain sparing”), but the risk exists of neurological and cognitive deficits at short or long term. On the other hand, diets rich in fat exert pernicious effects on brain function. Using a pig model of spontaneous IUGR, we have studied the effect on the adult of a long-term high-fat diet (HFD) on the neurotransmitter profile in several brain areas, and the morphology and the proteome of the hippocampus. Our hypothesis was that animals affected by IUGR (born with low birth weight) would present a different susceptibility to an HFD when they become adults, compared with normal birth-weight animals. Our results indicate that HFD affected the serotoninergic pathway, but it did not provoke relevant changes in the morphology of the hippocampus. Finally, the proteomic analysis revealed that, in some instances, NBW and LBW individuals respond to HFD in different ways. In particular, NBW animals presented changes in oxidative phosphorylation and the extracellular matrix, whereas LBW animals presented differences in RNA splicing, anterograde and retrograde transport and the mTOR pathway.
- Obesity and metabolic traits after high-fat diet in Iberian pigs with low birth weight of placental origin
2022-10-19 Intrauterine growth restriction (IUGR) and later obesity and metabolic disorders have classically been associated with maternal malnutrition, but most cases of IUGR are related to placental insufficiency. The current study, using a swine model for IUGR and obesity, aimed to determine the interaction of birth weight (categorized as low birth weight [LBW] or normal birth-weight [NBW]) and postnatal diet (categorized as maintenance diet [MD] or fattening diet [FD]) on body weight, adiposity and metabolic traits. FD induced higher body weight and adiposity (both p < 0.0001), with higher fructosamine levels (p < 0.005) and a trend toward higher HOMA- index (p = 0.05). NBW pigs remained heavier than LBW pigs during the early juvenile period (p < 0.005), but there were no differences at later stages. There were no differences in metabolic traits during juvenile development, but there were differences in adulthood, when LBW pigs showed higher glucose and lower insulin levels than NBW pigs (both p < 0.05). These results suggest that (a) FD allows LBW offspring to achieve similar obesity in adulthood as NBW offspring, and (b) glucose metabolism is more compromised in obese LBW than obese NBW pigs. The comparison of our data with previous studies highlights significant differences between offspring with LBW induced by maternal malnutrition or placental insufficiency, which should be considered when studying the condition.
- Maternal supplementation with polyphenols and Omega-3 fatty acids during pregnancy prenatal effects on fetal fatty acid composition in the Iberian pig
2022-08-21 Intrauterine Growth Restriction (IUGR) is a major problem in pig production and different strategies, mainly maternal supplementation with different agents, are currently being studied. The combination of hydroxytyrosol and n3-PUFA seems to be a promising treatment to counteract IUGR, since the combination may help improve n3-PUFA composition and lower the inflammatory status of IUGR piglets. The aim of the present study is to determine the effects of a maternal supplementation, from day 35 to day 100 of pregnancy, with linseed oil and hydroxytyrosol on the fetal FA composition. The results showed higher n3 levels, including eicosapentaenoic and docosahexaenoic FA in the offspring from treated gilts, which showed lower n6-PUFA/n3-PUFA (n6/n3) ratios. Saturated and monounsaturated fatty acids were also affected by treatment, especially in the muscle and brain. Thus, a maternal supplementation with linseed oil and hydroxytyrosol affected the fetal FA tissue composition, which could have implications in pig production due to the improvement of the piglets’ health status.