1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 10 of 16
  • Thumbnail Image
    Publication
    USP
    The impact of high-IgE levels on metabolome and microbiomein experimental allergic enteritis2024-06-23

    Background: The pathological mechanism of the gastrointestinal forms of food aller-gies is less understood in comparison to other clinical phenotypes, such as asthmaand anaphylaxis Importantly, high-IgE levels are a poor prognostic factor in gastroin-testinal allergies.Methods: This study investigated how high-IgE levels influence the development ofintestinal inflammation and the metabolome in allergic enteritis (AE), using IgE knock-in (IgEki) mice expressing high levels of IgE. In addition, correlation of the altered me-tabolome with gut microbiome was analysed.Results: Ovalbumin-sensitized and egg-white diet-fed (OVA/EW) BALB/c WT micedeveloped moderate AE, whereas OVA/EW IgEki mice induced more aggravated in-testinal inflammation with enhanced eosinophil accumulation. Untargeted metabo-lomics detected the increased levels of N-tau-methylhistamine and 2,3-butanediol,and reduced levels of butyric acid in faeces and/or sera of OVA/EW IgEki mice, whichwas accompanied with reduced Clostridium and increased Lactobacillus at the genus level. Non-sensitized and egg-white diet-fed (NC/EW) WT mice did not exhibit anysigns of AE, whereas NC/EW IgEki mice developed marginal degrees of AE. Comparedto NC/EW WT mice, enhanced levels of lysophospholipids, sphinganine and sphin-gosine were detected in serum and faecal samples of NC/EW IgEki mice. In addi-tion, several associations of altered metabolome with gut microbiome—for exampleAkkermansia with lysophosphatidylserine—were detected.Conclusions: Our results suggest that high-IgE levels alter intestinal and systemic levelsof endogenous and microbiota-associated metabolites in experimental AE. This studycontributes to deepening the knowledge of molecular mechanisms for the developmentof AE and provides clues to advance diagnostic and therapeutic strategies of allergicdiseases

  • Thumbnail Image
    Publication
    USP
    Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach2024-04-08

    The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.

  • Thumbnail Image
    Publication
    USP
    From Bacteria to Host: Deciphering the Impact of Sphingolipid Metabolism on Food Allergic Reactions2023-12-26

    Purpose of Review Allergic diseases have become a burden in industrialized societies. Among children, food allergy (FA) constitutes a major impairment of quality of life. FA is partly due to a lack or loss of tolerance to food antigens at the level of the intestinal mucosa, where the microbiota plays a crucial role. Early changes in the composition of the gut microbiota may influence the development of the immune system and can be related to the risk of allergic diseases, including FA. This review will focus on the role of sphingolipids and the major bacteria involved in their metabolism, in the development of food antigen sensitization and FA. Recent Findings Numerous studies have identified different patterns of microbial composition between individuals with and without FA, pointing to an interaction between gut microbiota, enterocytes, and immune cells. When this interaction is lost and an imbalance in the composition of the intestinal microbiota occurs, the integrity of the epithelial barrier may be altered, leading to intestinal permeability and sensitization to food antigens and the development of FA. Gram- negative bacteria, especially those of the Proteobacteria phylum, have been associated with the development of FA. Investigating the interactions between the intestinal microbiota and the immune system, their influence on intestinal barrier function, and their production of metabolites and signaling molecules may contribute to understanding the pathogenesis of FA. Summary Sphingolipids, a class of bioactive amphipathic lipids found in cell membranes, have emerged as critical regulators of inflammation. In this review, we will attempt to summarize the existing knowledge on the role of these molecules and the major bacteria involved in their metabolism in the mechanisms underlying sensitization to food antigens and the development of FA.

  • Thumbnail Image
    Publication
    USP
    Allergy-associated biomarkers in early life identified by Omics techniques2024-02-23

    The prevalence and severity of allergic diseases have increased over the last 30 years. Understanding the mechanisms responsible for these diseases is a major challenge in current allergology, as it is crucial for the transition towards precision medicine, which encompasses predictive, preventive, and personalized strategies. The urge to identify predictive biomarkers of allergy at early stages of life is crucial, especially in the context of major allergic diseases such as food allergy and atopic dermatitis. Identifying these biomarkers could enhance our understanding of the immature immune responses, improve allergy handling at early ages and pave the way for preventive and therapeutic approaches. This minireview aims to explore the relevance of three biomarker categories (proteome, microbiome, and metabolome) in early life. First, levels of some proteins emerge as potential indicators of mucosal health and metabolic status in certain allergic diseases. Second, bacterial taxonomy provides insight into the composition of the microbiota through high-throughput sequencing methods. Finally, metabolites, representing the end products of bacterial and host metabolic activity, serve as early indicators of changes in microbiota and host metabolism. This information could help to develop an extensive identification of biomarkers in AD and FA and their potential in translational personalized medicine in early life.

  • Thumbnail Image
    Publication
    USP
    Clinical Approach to Mast Cell Activation Syndrome: A Practical Overview2021

    The diagnosis of mast cell activation syndrome (MCAS) is defined by 3 criteria: (1) typical clinical signs and symptoms of acute, recurrent (episodic), and systemic mast cell activation (MCA); (2) increase in tryptase level to >20% + 2 ng/mL within 1-4 hours after onset of the acute crisis; and (3) response of MCA symptoms to antimediator therapy. Classification of MCAS requires highly sensitive and specific methodological approaches for the assessment of clonal bone marrow mast cells at low frequencies. The Spanish Network on Mastocytosis score has been used successfully as a predictive model for selecting MCAS candidates for bone marrow studies based on a high probability of an underlying clonal mast cell disorder. In this article, we propose a diagnostic algorithm and focus on the practical evaluation and management of patients with suspected MCAS.

  • Thumbnail Image
    Publication
    USP
    Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field2017-02-04

    Allergic asthma is a prominent disease especially during childhood. Indoor allergens, in general, and particularly house dust mites (HDM) are the most prevalent sensitizers associated with allergic asthma. Available data show that 65–130 million people are mite-sensitized world-wide and as many as 50% of these are asthmatic. In fact, sensitization to HDM in the first years of life can produce devastating effects on pulmonary function leading to asthmatic syndromes that can be fatal. To date, there has been considerable research into the pathological pathways and structural changes associated with allergic asthma. However, limitations related to the disease heterogeneity and a lack of knowledge into its pathophysiology have impeded the generation of valuable data needed to appropriately phenotype patients and, subsequently, treat this disease. Here, we report a systematic and integral analysis of the disease, from airway remodelling to the immune response taking place throughout the disease stages. We present an overview of metabolomics, the management of complex multifactorial diseases through the analysis of all possible metabolites in a biological sample, obtaining a global interpretation of biological systems. Special interest is placed on the challenges to obtain biological samples and the methodological aspects to acquire relevant information, focusing on the identification of novel biomarkers associated with specific phenotypes of allergic asthma. We also present an overview of the metabolites cited in the literature, which have been related to inflammation and immune response in asthma and other allergy-related diseases.

  • Thumbnail Image
    Publication
    USP
    Allergen Extraction and Purification from Natural Products: Main Chromatographic Techniques2017-03-18

    The development of techniques and methods for allergen purification is essential for diagnosis and the development of safe immunotherapeutic agents. The most common purification techniques include chromatographic methodologies. In this chapter, we review and describe the details of the methodologies of using ion-exchange, gel-filtration, and affinity chromatography to purify two well-known panallergens, profilin and parvalbumin.

  • Thumbnail Image
    Publication
    USP
    Techniques for Phenotyping the Gut Microbiota Metabolome2019

    Omics strategies have triggered a revolution in the understanding of the microorganisms that reside in our body, and their implications in health and disease. For diagnosis and therapeutics, metabolomic fingerprinting is the most powerful approach, since the metabolites represent the actual interplay between humans and microbes. Studying the metabolome requires several new high-throughput analytical techniques and innovative computational methodologies. Herein, we will focus on the metabolomics workflow for gut microbiota analysis, including sampling, laboratory procedures, and available analytical techniques, paying special attention to microbiota isolation and multiplatform complementarity. Finally, we will summarize some applications and implications of gut microbiota metabolites in biomarkers discovery and several therapeutic strategies, such as fecal microbiota transplantation and the usage of prebiotics and probiotics.

  • Thumbnail Image
    Publication
    USP
    Microbiome and Allergic Diseases2018-07-17

    Allergic diseases, such as respiratory, cutaneous, and food allergy, have dramatically increased in prevalence over the last few decades. Recent research points to a central role of the microbiome, which is highly influenced by multiple environmental and dietary factors. It is well established that the microbiome can modulate the immune response, from cellular development to organ and tissue formation exerting its effects through multiple interactions with both the innate and acquired branches of the immune system. It has been described at some extent changes in environment and nutrition produce dysbiosis in the gut but also in the skin, and lung microbiome, inducing qualitative and quantitative changes in composition and metabolic activity. Here, we review the potential role of the skin, respiratory, and gastrointestinal tract (GIT) microbiomes in allergic diseases. In the GIT, the microbiome has been proven to be important in developing either effector or tolerant responses to different antigens by balancing the activities of Th1 and Th2 cells. In the lung, the microbiome may play a role in driving asthma endotype polarization, by adjusting the balance between Th2 and Th17 patterns. Bacterial dysbiosis is associated with chronic inflammatory disorders of the skin, such as atopic dermatitis and psoriasis. Thus, the microbiome can be considered a therapeutical target for treating inflammatory diseases, such as allergy. Despite some limitations, interventions with probiotics, prebiotics, and/or synbiotics seem promising for the development of a preventive therapy by restoring altered microbiome functionality, or as an adjuvant in specific immunotherapy.

  • Thumbnail Image
    Publication
    USP
    Lipopolysaccharide-regulated secretion of soluble and vesicle-based proteins from a panel of colorectal cancer cell lines2021-02-15

    Purpose: To mimic the perioperative microenvironment where bacterial products get in contact with colorectal cancer (CRC) cells and study its impact on protein release, we exposed six CRC cell lines to lipopolysaccharide (LPS) and investigated the effect on the secretome using in-depthmass spectrometry-based proteomics. Experimental design: Cancer cell secretome was harvested in bio-duplicate after LPS treatment, and separated in EV and soluble secretome (SS) fractions. Gel-fractionated proteins were analysed by label-free nano-liquid chromatography coupled to tandem mass spectrometry. NF-κB activation, triggered upon LPS treatment, was evaluated. Results: We report a CRC secretome dataset of 5601 proteins. Comparison of all LPS-treated cells with controls revealed 37 proteins with altered abundance in the SS, including RPS25; and 13 in EVs, including HMGB1. Comparing controls and LPStreated samples per cell line, revealed 564 significant differential proteins with foldchange >3. The LPS-induced release of RPS25 was validated by western blot. Conclusions and clinical relevance: Bacterial endotoxin hasminor impact on the global CRC cell line secretome, yet it may alter protein release in a cell line-specific manner. This modulation might play a role in orchestrating the development of a permissive environment for CRC liver metastasis, especially through EV-communication.