1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- Genetic haplotypes associated with immune response to "Leishmania infantum" infection in dogs
2023-09 Leishmaniasis is a zoonotic parasitic disease, and the main reservoir of the parasite is the dog, although recent years have seen an increase in other mammalian species. In the Mediterranean region, where it is an endemic disease, it is caused by the species Leishmania infantum. The Ibizan hound, an autochthonous breed of this region, appears to have a genetic resistance to parasitic infection, whereas other canine breeds, such as the Boxer, are susceptible to infection. These differences are related to the differentiated activation of the immune response, with the Ibizan hound activating the Th1 immune response, whereas the Boxer breed triggers the Th2 immune response. Cytokine levels and genomic haplotypes of several genes involved in the immune response were analysed in twenty-eight Ibizan hound (resistant canine breed model) and twenty-four Boxer (susceptible canine breed) without clinical signs in the Mediterranean region. Cytokine levels were analysed by ELISA commercial kits and haplotypes were studied using CanineHD DNA Analysis BeadChip including 165,480 mapped positions. The results show 126 haplotypes associated with differential immune response in dogs. Specifically, haplotypes in IL12RB1, IL6R, CIITA, THEMIS, NOXA1, HEY2, RAB38, SLC35D2, SLC28A3, RASEF and DAPK1 genes are associated with serum levels of IFN-γ, IL-2, IL-8, and IL-18. These results suggest that the resistance or susceptibility to Leishmania infantum infection could be a consequence of haplotypes in several genes related to immune response. Future studies are needed to elucidate the relationship of these haplotypes with immune response and gene expression regulation.
- Interleukin 6 and interferon gamma haplotypes are related to cytokine serum levels in dogs in an endemic "Leishmania infantum" region
2023-02-10 Background The Ibizan Hound is a canine breed native to the Mediterranean region, where leishmaniasis is an endemic zoonosis. Several studies indicate a low prevalence of this disease in Ibizan Hound dogs, whereas other canine breeds present a high prevalence. However, the underlying molecular mechanisms still remain unknown. The aim of this work is to analyse the relationship between serum levels of cytokines and the genomic profiles in two canine breeds, Ibizan Hound (resistant canine breed model) and Boxer (susceptible canine breed model). Methods In this study, we analyse the haplotypes of genes encoding cytokines related to immune response of Leishmania infantum infection in twenty-four Boxers and twenty-eight Ibizan Hounds apparently healthy using CanineHD DNA Analysis BeadChip including 165,480 mapped positions. The haplo.glm extension of haplo.score was used to perform a General Linear Model (GLM) regression to estimate the magnitude of individual haplotype effects within each cytokine. Results Mean levels of interferon gamma (IFN-γ), interleukin 2 (IL-2) and IL-18 in Boxer dogs were 0.19 ± 0.05 ng/ml, 46.70 ± 4.54 ng/ml, and 36.37 ± 30.59 pg/ml, whereas Ibizan Hound dogs present 0.49 ± 0.05 ng/ml, 64.55 ± 4.54 ng/ ml, and 492.10 ± 31.18 pg/ml, respectively. The GLM regression shows fifteen haplotypes with statistically significant effect on the cytokine serum levels (P < 0.05). The more relevant are IL6-CGAAG and IFNG-GCA haplotypes, which increase and decrease the IL-2, IL-8 and IFN-γ serum levels, respectively. Conclusions Haplotypes in the IFNG and IL6 genes have been correlated to serum levels of IFN-γ, IL-2 and IL-18, and a moderate effect has been found on IL8 haplotype correlated to IL-8 and IL-18 serum levels. The results indicate that the resistance to L. infantum infection could be a consequence of certain haplotypes with a high frequency in the Ibizan Hound dog breed, while susceptibility to the disease would be related to other specific haplotypes, with high frequency in Boxer. Future studies are needed to elucidate whether these differences and haplotypes are related to different phenotypes in immune response and expression gene regulation to L. infantum infections in dogs and their possible application in new treatments and vaccines.
- A trial comparing growing rabbits differing in 18 generations of selection for growth rate reveals a potential lack of effectiveness in the genetic selection progress
2023-11-23 A total of 338 weaned rabbits (from the R line, selected for post-weaning growth rate) were used to evaluate the response to 18 generations of selection for increased growth rate on rabbit performance. Animals were obtained from two vitrified populations of the R line: R19V, belonging to the 18th generation (n = 165), and R37V, belonging to the 36th generation (n = 173), were allocated in individual and collective pens (178 and 160, respectively). A fattening trial was conducted from weaning (28 d of age until 63 d of age). During the trial, the body weight (BW), daily feed intake (DFI), average daily gain (ADG) and feed conversion ratio (FCR) were weekly monitored. Additionally, mortality and morbidity were daily registered. On days 49 to 53, an apparent faecal digestibility trial was also performed (12 animals per generation). Our results indicate that the generation of selection for growth rate did not affect mortality and morbidity. There were no differences in the diet digestibility according to the generation of selection. Regarding performance traits, R37V animals showed higher global BW (+6.7%; p = 0.0011) than R19V animals. R37V animals showed the same BW at weaning; however, R37V animals showed higher BW values in the last three weeks compared with R19V animals. Animals from the R37V generation also showed a higher DFI from 56 to 63 d of age (+12%; p = 0.0152) than R19V animals. However, there were no differences in global ADG and FCR between generations. These results indicate that the selection for growth rate in growing rabbits has slowed down, suggesting a lack of effectiveness in the genetic progress.
- Targeted and untargeted metabolomic profiles in wild rabbit does ("Oryctolagus cuniculus") of different breeding states (pregnant and lactating)
2024 Ecological nutrition aims to unravel the extensive web of nutritional links that drives animals in their interactions with their ecological environments. Nutrition plays a key role in the success of European wild rabbit (Oryctolagus cuniculus) and could be affected by the breeding status of the animals and reflected in the metabolome of this species. As nutritional needs are considerably increased during pregnancy and lactation, the main objective of this work was to determine how the breeding status (pregnant and lactating) of European wild rabbit does affects nutritional requirements and their metabolome (using targeted and untargeted metabolomics), aiming to find a useful biomarker of breeding status and for monitoring nutritional requirements. To address this gap, 60 wild European rabbits were studied. Animals were divided according to their breeding status and only pregnant (n = 18) and lactating (n = 11) rabbit does were used (n = 29 in total). The body weight and length of each animal were analyzed. The relative and absolute chemical composition of the gastric content and whole blood sample were taken, and targeted and untargeted metabolomics were analyzed. As a main result, there were no differences in biometric measurements, gastric content, and targeted metabolomics, except for live weight and nonesterified fatty acids (NEFA), as pregnant animals showed higher live weight (+12%; p = 0.0234) and lower NEFA acid levels (−46%; p = 0.0262) than lactating females. Regarding untargeted metabolomics, a good differentiation of the metabolome of the two breeding groups was confirmed, and it was proven that pregnant animals showed higher plasmatic levels of succinic anhydride (3.48 more times; p = 0.0236), succinic acid (succinate) (3.1 more times; p = 0.0068) and propionic acid (3.98 more times; p = 0.0121) than lactating animals. However, lactating animals showed higher levels of N-[(3a,5b,7b)-7-hydroxy-24-oxo-3-(sulfoxide) cholan-24-yl]-Glycine (cholestadien) (2.4 more times; p < 0.0420), 4-maleyl-acetoacetate (MAA) (3.2 more times; p < 0.0364) and irilone (2.2 more times; p = 0.0451) than pregnant animals, any of these metabolites could be used as a potential biomarker. From these results, it can be concluded that the most notable changes were observed in the metabolome of individuals, with most of the changes observed being due to energy and protein mobilisation.
- Effect of selection for growth rate on the rabbit (Oryctolagus cuniculus) immune system and its response after experimental "Staphylococcus aureus" infection
2023-09 The aim of the work was to evaluate if genetic selection for daily gain may affect the immune system. Two experiments were performed. The first one involved 80 rabbit females and their first two litters to explore the effect of selection on the ability of animals to maintain immune competence. Two generations from a line selected for average daily gain (ADG) were evaluated (VR19 generation 19th, n = 43; VR37 generation 37th, n = 37). In females, the effect of selection and its interaction with physiological state were not significant for any trait. In litters, the selection criterion increased the granulocyte to lymphocyte ratio. The second experiment involved 73 19-week-old females (VR19, n = 39; VR37, n = 34) to explore the effect of genetic selection on immune response after S. aureus infection. The VR37 rabbit females had lower counts for total lymphocytes, CD5+, CD4+, CD8+, CD25+, monocytes, the CD4+/CD8+ ratio and platelets than those of VR19 (-14, -21, -25, -15, -33, -18, -11 and -11%, respectively; P < 0.05). VR37 had less erythema (-8.4 percentage points; P < 0.05), fewer nodules (-6.5 percentage points; P < 0.05) and a smaller nodule size (-0.65 cm3 on 7 day post-inoculation; P < 0.05) compared to VR19. Our study suggests that genetic selection for average daily gain does not negatively affect the maintenance of a competent immune system or the ability to establish immune response. It seems that such selection may improve the response to S. aureus infections.