1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    UCH
    Bacteriophage application for "Salmonella" control in poultry and its implications on their microbiota and metabolome2022-12-19

    Salmonella has been recognized as one of the most important zoonotic pathogens worldwide, being poultry derived products the main source of human infection. Among the most promising tools for Salmonella control at the field level in poultry production are included bacteriophages (or phages). However, little is known about the phage application impact on the rest of the gut microbiota. In this sense, new studies suggest that phage application may affects the gastrointestinal ecology homeostasis. Therefore, the general objective of this doctoral thesis was to apply bacteriophages for Salmonella control in broiler production, focusing on their effect on intestinal health, by means of genomic sequencing and metabolomic study. To achieve this goal, two different parts were performed. The first part studied the phage gastrointestinal dynamics in Salmonella-free broilers and its influence on microbiota and metabolome, meanwhile the second part studied the phage dynamics in Salmonella-infected broilers and its influence on microbiota and metabolome. The results aim to provide important insights into the use of phages as a preventative and biocontrol strategy against Salmonella infection from farm-to-fork.

  • Thumbnail Image
    Publication
    UCH
    Research note : persistent "Salmonella" problems in slaughterhouses related to clones linked to poultry companies2022-08-11

    Salmonellosis remains one of the main foodborne zoonoses in Europe, with poultry products as the main source of human infections. The slaughterhouse has been identified as a potential source for Salmonella contamination of poultry meat. Despite the mandatory programme of the EU, there are companies with persistent Salmonella that are unable to remove the bacteria from their processing environment, compromising the entire production line. In this context, an intensive sampling study was conducted to investigate a slaughterhouse with persistent Salmonella problems, establishing the genetic relationship among Salmonella strains isolated during the slaughter process. A total of 36 broiler flocks were sampled during processing at the slaughterhouse. Salmonella was identified based on ISO 6579-1:2017 (Annex D), serotyped by Kauffman-White-Le-Minor technique, and the genetic relationship was assessed with ERIC-PCR followed by PFGE. The outcomes showed that 69.4% of the batches sampled carried Salmonella upon arrival at the slaughterhouse and that 46.3% of the different samples from carcasses were contaminated with Salmonella. The two serovars isolated at the different steps in the slaughterhouse were Enteritidis (98.2%) and Kentucky (1.8%). Pulsed-field gel electrophoresis analysis revealed a low genetic diversity, with all S. Enteritidis isolates showing a nearly identical pulsotype (similarity >85%) and S. Kentucky strains showed the same XbaI PFGE profile (95.0% genetic similarity). The results of this study showed a high genetic relationship among isolates recovered from carcasses and environmental samples in the slaughterhouse from both Salmonella-positive and Salmonella- free flocks. Salmonella strains re-circulated across to poultry flocks and re-entered the slaughterhouse to survive on the processing line. Thus, it is necessary to implement molecular diagnosis methods in time at the field level to determine the Salmonella epidemiology of the flock, to make rapid decisions for the control of Salmonella and prevent entry into the slaughterhouse environment.

  • Thumbnail Image
    Publication
    UCH
    Antimicrobial resistant "Salmonella" in chelonians : assessing its potential risk in zoological institutions in Spain2022-05-31

    Salmonella is mostly noted as a food-borne pathogen, but contact with chelonians has also been reported as a source of infection. Moreover, high levels of antimicrobial resistance (AMR) have been reported in Salmonella isolated from wild and captive reptiles. The aim of this study was to assess the occurrence of Salmonella AMR carriage by chelonians admitted to two zoological institutions in Spain, characterizing the isolates to assess the Salmonella AMR epidemiology in wildlife. To this end, 152 chelonians from nine species were sampled upon their arrival at the zoological nuclei. Salmonella identification was based on ISO 6579-1:2017 (Annex D), isolates were serotyped and their AMR analysed according to the EU Decision 2013/652. Moreover, the genetic relationship of the isolates was assessed by pulsed-field gel electrophoresis (PFGE). Results showed 19% (29/152) of the chelonians positive to Salmonella, all of them tortoises. For all isolates, 69% (20/29) were resistant and 34% (10/29) multidrug-resistant (MDR) strains. PFGE clustered isolates according to the serovar, confirming a low genetic diversity. In conclusion, this study shows a high presence of MDR Salmonella strains in tortoises at their entry into zoological nuclei. This condition highlights the need to establish Salmonella detection protocols for the entry of animals into these centres.